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ABSTRACT

This report is the written version of a series of lectures
presented by the author at a NATO advanced Studies Institute
held at the University of Liége, Belgium, during the period
September 6-17, 1976. The report presents an exposition of the
results of the author's research on acoustic wave propagation
during the last five years. The principal result of this research
is the "method of spectral and asymptotic analysis" for determining
the structure of acoustic waves in unbounded media. In this
report the method is explained and illustrated by its application
to the following four classes of acoustic wave propagation problems.

1. Scattering by bounded obstacles in a homogeneous unlimited

fluid.

2. Propagation and scattering in simple and compound tubular

waveguides,

3. Propagation in plane stratified fluids.

4, Propagation in crystals.
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SPECTRAL AND ASYMPTOTIC ANALYSIS OF ACOUSTIC WAVE PROPAGATION

Calvin H. Wilcox

Department of Mathematics, University of Utah,
Salt Lake City, Utah, USA

1. INTRODUCTION

Classical theories of acoustic wave propagation provide a
wealth of examples of boundary value problems for evolution partial
differential equations. These problems may be described categori-
cally as initial-boundary value problems for certain systems of
linear hyperbolic partial differential equations with variable
coefficients. However, the known existence, uniqueness and regu-
larity theorems for these problems are only a first step toward
understanding the structure of the solutions. To obtain a deeper
insight it is essential to discover how the nature of the soluticns
changes with the geometry of the boundary and with the coefficients.
An examination of recent scientific literature on acoustics reveals
a great variety of physically distinct phenomena. Examples incliude
phenomena associated with acoustic wave propagation in stratified
fluids, anisotropic solids such as crystals and man-made composites,
open and closed waveguides, periodic media and many others. A
theory which treats all of these phenomena on the sawme footing can
provide only the most superficial information about the structure
of acoustic waves.

The purpose of these lectures is to present a method for
determining the structure of acoustic waves in unbounded media.
The method will be explained in the context of four specific classes
of propagation problems. No attempt will be made to formulate the
most gereral problem that can be analyzed by the method. Indeed,
such a formulation would necessarily be too abstract to be useful.
However, it will be clear from the examples that the method is
applicable to many other wave propagation problems, both in acous-
tics and in other areas of physics.
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It will be helpful to outline the main steps of the method
here before passing to a detailed discussion of specific cases.
The method is based on the fact that the states of an acoustic
medium which occupies a spatial domain §# C R® can be described by
the elements of a Hilbert space i( of functions on §!. The evolution
of an acoustic wave in the medium is then described by a curve
t > u(t,*) € (. Moreover, there is a selfadjoint real positive
operator A on ¥, determined by the geometry of { and the physical
properties of the medium, such that the evolution of acoustic waves
in the medium is governed by the equaticn

d?u

qpz T Au = 0 (1.1

It follows that the evolution is given by
u(t,*) = Re fexp (-itAY? )h} (1.2)
where h € j( characterizes the initial state of the wave.

The spectral theorem may be used to construct tie solution
operator exp (—itAl/z). However, the very generality of this
theorem implies that it can give little specific information about
the structure of the wave functions u(t,x). Accordingly, the next
step in the method is to construct an eigenfunction expansion for
A. In each of the cases discussed below A has a purely continuous
spectrum and the eigenfunctions are therefore generalized eigen-—
functions. They define a complete set of steady-state modes of
propagation of the medium and the most general time-dependent
acoustic wave in j( can be constructed as a spectral integral over
these modes.

The final step in the method is an asymptotic analysis for
t > © of the spectral integral representing u(t,x). The result is
an asymptotic wave function u*(t,x) which approximates u(t,x) in
# when t + «; that is,

1im Ju(e,*) - u(t,* )0y =0 (1.3)
>0
Stronger forms of ccnvergence can also be proved under appropriate
supplementary hypotheses about the medium and its initial state.

The result (1.3) offers a fundamental insight into the nature
of traasient acoustic waves in unbounded media. For it is found in
eacli case that the form of the asymptotic wave function u (t,x) is
cdetermined entirely by the geometry of the domain { and the piysical
characteristics of the medium that fills it. Only the fine struc-
ture of u”(t,x) depends on the initial state of the wave. Thus in
the simple case of a homogencous fluid filling R}, uwo(e,x) 18 a
spherical wave:




u (t,x) = F(r - t,0)/r, x = 16, |8] =1 (1.4)

The initial state affects only the shape of the profile F(t,6). 1In
other cases the fogp of uw(t,x) is entirely different, but in each
case the form ¢f u (t,x) is determined solely by the geometry and
physical characteristics of the medium. In each case u®(t,x) gives
the final form of any transient wave in the medium. The details of
how the wave is excited have only a secondary effect on the ultimace
waveform.

The remainder of these lectures is organized as follows. The
fundamental boundary value problems of acoustics are formulated in
section 2. The spectral and asymptotic analysis of the four classes
of propagation problems is presented in sections 3 through 8. The
four classos, which are physically quite different, were chosen to
illustrate the flexibility and scope of the method. In each of the
four classes there is a special case for which, because of addi-
tional symmetry, the eigenfunctions can be constructed explicitly.
The remaining cases of the class are then treated as perturbations
of the special case. When used in this context, perturbation theory
is usually called the steady-state, or time-dependent, theory of
scattering. The first class of problems treated below corresponds
physically to the scattering of acoustic waves by bounded obstacles
immersed in a homogeneous fluid. Mathematically, it is an initial-
boundary groblem for the d'Alembert equation in an exterior domain
2 ¢ R? (R*-Q compact). The simple special case where Q = R} is
treated in section 3 and the general case in scction 4. The second
class of problems deals with tubular waveguides. Thus §! is the
union of a bowrnded domain and a finite number of semi-infinite cyl-
inders. The special case of a single cylinder is treated in section
5 and the general case in section 6. The third class of problems,
treated in section 7, deals with acoustic wave propagation in plane
stratified fluids filling a half-space. Here the novel feature is
the possibility of the trapping of waves by total internal reflec-
tion. The fourth and final class of problems, dealing with acoustic
waves in crystalline solids, is discussed in section 8. The new
feature in this case is the anisotropy which has a profound effect
on the form of the asymptotic wave functions.

The results presented below are based primarily on the author's
research. Sections 3 and 4 are based on the author's monograph on
"Scattering Theory for the d'Alembert Equation in Exterior Domains"
[42]). The spectral theory of acoustic wave propagation and scatter-
ing in tubular waveguides was developed by C. Goldstein [9-12] and
by W. C. Lyford [21,22]. More recently, J. C. Guillot and the
author [13] have developed the theory for domains @ which are the
union of a bounded domain and a finite number of cylinders and
cones. Sections 5 and 6 present spectral and scattering theory for
tubular waveguides following the plan of [13]. Sections 7 and 8 are
based on the author's publications [39,40,43,44].




The goal of these lectures is to provide an introduction to
the method of spectral and asymptotic analysis of wave propagation.
Therefore, the lectures emphasize concepts and results, vather than
techniques of proof. Proofs of the results given here may be found
in the referecnces listed at the end of the lectures.

2. BOUNDARY VALUE PROBLEMS OF ACOUSTICS

Acoustic waves are the mechanical vibrations of small amplitude
that are observed in all forms of matter. The classical equations
of acoustics are the linear partial differential equations which
govern small perturbations of the equilibrium states of matter.
Derivations of these equations from the laws of mechanics, together
with a discussion of their range of validity, may be found in
[3,4,8,20,31]. In this section the equations and their physical
interpretation are reviewed briefly and the principal boundary
vailue problems for them are formulated and discussed. Applications
of the equations to particular classes of acoustic wave propagation
problems are developed in sections 3 through 8.

The following notation is used throughout the remainder of the
lectures. t € R denotes a time coordinate. x = (X;,X,,x;) € R’
denote Cartesian coordinates of a point in Euclidean space. 2 c R?
denotes a domain in R? and 30 denotes the boundary of .

Vv = (),,vz,va) = V(x) denotes the unit exterior normal vector to of!
at points x € 9 where it exists. The equations of acoustics are
written below in the notation of Cartesian tensor analysis. In
particular, the summation convention is used. Acoustic waves in
fluids (gases and liquids) and solids are discussed separately.

The simpler case of fluids is treated first.

2.1 Acoustic waves in fluids

The case of an inhomogeneous fluid occupying a domain & C R’
is considered. The propagotion of acoustic waves in such a fluid
is govericed by two functions of x € §:

p = p(x), the equilibrium density of the fluid (2.1)
“and

¢ = ¢(x), the local speed of sound in the fluid (2.2)
The state of the acoustic field in the fluid is determined by

v, = vj(t,x), the velocity field of the fluid at (Za3)
4 time t and position x




and

p = p(t,x), the pressure field of the fluid at (2.4)
time t and position x

Moreover, it is assumed that
p(t,x) = py(x) + u(t,x) (2.5)
where py(x) 1is the equilibrium pressure of the fluid and u(t,x)

remains small. With this notation the equations satisfied by the
acoustic field in the fluid are

v,

i PO S DN 2.6

T axj 9, 3=1,2,3 (2.6)

v

du . .2 ki

s + c“(x) p(x) axj =0 (2.7)
Elimination of the velocity field gives the single equation

3%u 2 ) ( I

atZ - c (x) p(X) axj lp(x) aij =0 (2'8)

for the pressure increment u = p - p,. Moreover, if u is known
then the velocity field vj can be calculated from (2.6).

The wave equation (2.8) must be supplemented by a boundsry
condition at the fluid boundary 9. Two physically distinct cases
are considered here. The first case is that of a free boundory
9. Here the pressure at the boundary is unperturbed; that is,

u

= 0 if 90 is a free boundary (2.9)

This condition is often used to represent an air-water interface

in the theory of underwater sound. The second case is that of a
rigid boundary 9%. Here the normal component of the fluid velocity
must vanish: vjvj = 0 on 9. It follows from (2.6) that

du

=\)j -3-;(:1

du

3v = 0 if 90 is a rigid boundary (2.10)

1Y)

af

The solvability of the boundary value problems (2.8), (2.9} and
(2.8), (2.10) is discussed below, after the discussion of acoustic
waves in solids.
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2.2 Acoustic waves in solids

The case of an inhomogeneous elastic solid occupying a domain

Q2 c R? is considered. The propagation of acoustic waves in such a

solid is governed by the following functions of x € §:
p = p(x), the equilibrium density of the solid (2.11)

and

ciz = c%;(x), the stress-strain tensor for the solid (2.12)

The stress-strain tensor must have the symmetry properties [4].

ik ki kj _ mf i
Cm = St = Cmp " ij for all j,k,2,m = 1,2,3 (2.13)

It follows that the 81 components cig(x) are determined by 21
functions. The state of the acoustic field in the solid is
determined by

uj = u.(t,x), the displacement field of the solid (2.14)
. at time t and position x

and

0., =0, (t,x), the stress tensor field of the (2.15)
jk jk : : y :
solid at time t and position X

Moreover, the stress tensor field is symmetric:

sk = %; for all j;k = 1,2,3 (2.16)

With this notation the equations satisfied by the acoustic field
in the solid are

(o]

o -’L“‘()ip‘— k= 1,2,3 (2.17)
jk" ‘ikx axmyJ’_:9 L

2
) uj 1 BOJk

3ez p(x) axk » 3 =1,2,3 (2.18)

Elimination of the stress tensor gives the equations

3%u du
3 1 L) Rm(x) 2 0 k.
- = . =| =0, § =1,2,3 (2.19)
at? p(x) 9%y ik 8xm
i s -~




~

for the displacement field u;. Moreover, if u; is known then
the stress tensor field Ojk can be calculated from (2.17).

The wave equation (2.19) must be supplemented by boundary
conditions at the boundary 92 of the solid. Only the cases of
free and rigid boundaries will be considered here. In the first
case the normal component of the stress must vanish at the
boundary. Hence

tm Y
ojkvklaﬂ = cjk T =0 if 9 is a free (2.20)
m

af boundary

Vi

In the second case the displacement must vanish at the boundary;
that is,

u = 0 if o is a rigid boundary (2.21)

af

J

2.3 Energy integrals

One of the most important formal properties of the equations
of acoustics is the existence of quadratic energy integrals. The
first order system (2.6), (2.7) for acoustic waves in fluids has
the quadratic energy density

(=1

n(t,x) = 7< p(x)v vy + - 2(x)p(x) u? : (2.22)

and corresponding energy integral

E(vl,vz,v3,u,K,t) = J n(t,x)dx (2.23)
K

where dx = dx,;dx,dx; denotes Lebesgue maaqure in R}. The encrgy
density for the derived field v! = dv;/dt, u' = du/3t, which also
satisfies the field equations (i 6), %2 7), can be written

2
CPORDRIED () (05 R R S (1 (2.24)
WAEX) = 5 56 3%, Bx; SIS TYSN) [au]

by (2.6). The integral

\

E(u,K,t) = j n'(t,x)dx (2.25)
K

is an energy integral for solutions of the scalar wave equation
(2.8). The importance of these integrals in the theory of acoustic
waves derives from the conservation laws for them. In differential
form they state that




ance
”(a’tl") o aij (wv,) (2.26)

and

n'(t,x) _ 3 [ 1 du Bu] (2.27)
j

ot ox o(x) ot axj

These equations follow immediately from (2.6), (2.7) and the
definitions. The integral forms of the conservation laws follow
from (2.26), (2.27) and the divergence theorem. They may be
written

dE(vl,vz,va,u,K,t)/dt = - J;K u(vjvj)dS (2.28)
and
3 1 _9udu
dE(u,K,t)/dt = J;K 5(x) 3t Bv ds (2.29)

where K C R® is auny domain for which the divergence theorem is
valid and dS is the element of area on 9K. In particular, if
u(t,x) is a solution of (2.8) which satisfies (2.9) or (2.10) then
(2.29) implies that dE(u,f,t)/dt = 0.

The equations for acoustic waves in solids have an analogous
quadratic energy integral

E(ul,uz,u3,K,t) = L& n(t,x)dx (2.30)
with density
du, du du, du
-k ol g, Lm i ke
n(e,x) =3 <lp(x) 5 e T cjk(x) o, % (2.31)

The corresponding conservation law, which follows from (2.19), is

du, du
Mt 3 | fm g 4y
T ™ [cjk(x) o acJ ==

in differential form and
du
dE(ul,uz,u3,K,t)/dt = J;K (ajkvk) 35} ds (2.33)

in integral form. In particular, solutions of (2.19) which satisfy
(2.20) or (2.21) also satisfy dE(ul,uz,ua,Q,t)/dt =0,
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The preceding remarks emphasize the mathematical relationship
of the quadratic energy integrals to the field equations of acous-
tics. The term "eneigy' has been used because in certain cases
the integrals can be interpreted as the portion of the energy of
the acoustic field that is in the set K at time t. This interpre-
tation is not always correct because the linear equations cf
acoustics are only a first-order approximation to more complicated
nonlinear equations and the energy densities defined above are
second-order quantities. Hence, it is possible that other second-
order terms which were dropped in the linearization should be
included in the energy densities. A correct calculation of the
energy must begin with the original nonlinear problem. A discussion
of these problems may be fecund in [8,31] for the case of fluids and
in [4] for the case of solids.

It is important to realize that the energy integrals defined
above play an escential role in the theory of acoustic fields,
whether or not they represent the actual physical energy of the
fields. 1Indeed, it was shown in [33] and [34] that the existence
of these integrals implies the existence and uniqueness of solu-
tions to the basic initial-boundary value problems for acoustic
fields. Moreover, recent work on eigenfunction expansions and
scattering theory makes use of Hilbert spaces based on energy
integrals. The one indispensible hypothesis that must be made is
that the quadratic forms (2.22) or (2.24) and (2.31) be positive
definite. For (2.22) and (2.24) this means that

p(x) > 0 and c?(x) > 0 for all x € Q (2.34)
In any case, these hypotheses are essential because of the physical
interpretation of p(x) and c(x). The form (2.31) is positive
definite if p(x) > 0 and

fm =

cjk(x) ERm Ejk > 0 for all x €  and Egm = gml 0 (2.35)
The last condition can also be expressed by means of the well-knowm
determinantal criteria for a quadratic form to be positive definite.
It is assumed throughout these lectures that (2.34) and (2.35) are

satisfied.

It has been shown that the acoustic fields in both fluids and
solids satisfy partial differential equations of the form

~5 +Au =0 (2.36)

where A is a second order partial differential operator in the
space variables. In the cuse of fluids u(t,x) € R, Au(t,x) € R
and
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s = =) ok o [ 3000y ] (2.37)
ij o(x) ij

while in the case of solids u(t,x) = (u,(t,x),a,(t,x),u,(t,x)) € R?,
Au(t,x) € R?® and

du
i L
(Au)j = - 51;7'53; cj:(x) z;f} y g =11,253 (2.38)

Thus in both cases the evolution of acoustic waves in a medium
which fills a domain @ ¢ R® is described by the solution of an
initial-boundary valuec problem of the form

9%u s

3¢2 +Au =0 for t >0, x€ Q (2.39)

Bu=0 for t >0, x € 3 (2.40) |
u(0,x) = f(x) and 9u(0,x)/dt = g(x) for x € Q (2.41)

Here (2.40) represents one of the boundary conditions (2.9),
(2.10) in the case of a fluid and (2.20), (2.21) in the case of a
solid.

It is interesting to note that the positive definiteness of
the energy densities, hypothesized above on physical grounds, im-
plies the hyporbolicity of the equation (2.36). It follows that
the initial-boundary value problem (2.39) - (2.41) has compact
domains of dependence and influence [6,33]. In physical terms
this means that acoustic waves propagate into undisturbed portions
of a medium with finite speed.

A simple and rigorous solution theory for the initial~boundary
value problem (2.39) -~ (2.41) can be based on the theory of self-
adjoint operators in Hilbert space. This possibility follows from
the divergence theorem which implies the formal selfadjointness of
the operators A relative to suitable inner products. Indeed, for
the operator (2.37) the divergence theorem implies

J Au v ¢ 2(x) pl(x)dx :
9) (2.42)

qu v -1 du
= = ~— p (x)dx - j — v p~l(x)ds
JQ ij ij 30 LY i
|
and hence (2.43)
I {Au v - u Avlc2(x) p~Y(x)dx = J {u %X - gg v} p~1(x)dsS
Q gg v W
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Thus ir an inner product is defined by
Ww = | 56 ve0 e o dx (2.44)
then i
(Au,v) = (u,Av) (2.45)

for all u and v in the domain of A which satisfy the boundary
condition (2.9) or (2.10). Moreover, (2.44) defines the inner
product in the Hilbert space ¥ = L,(,c=2(x)p~1(x)dx) of functions
_ on  which are square-integrable with respect to the measure ;
3 c~?(x)p~'(x)dx. Hence (2.45) implies that A, acting in the clas~
E sical sense on functions which satisfy (2.9) or (2.10), is a
symmetric operator in X. Moreover, (2.42) implies that

du du

(Au,u) = JQ e Bx p~1(x)dx > 0 (2.46)
J J

i for all u in the domain of A, Hence A is positive. It was shown
i in [42] and [43] how the domain of A could be enlarged to obtain
an extension A of A which is selfadjoint and positive in 3. The
boundary condition (2.9) or (2.10) is incorporated into the defi-
nition of the domain of A. Moreover, the construction provides a
meaningful gencralization of the boundary conditions foir arbitrary
domains 2 C R®. The precise definitions and results are revicwed
in sections 3-7 below.

o——

The operator (2.38) for acoustic waves in solids can be
treated similarly. The divergence theorem implies

JQ (Au)j vj p(x)dx (2.47)
du, dv Jdu
= J C%E(X) 5;&'5~1 dx - J [C%E(X)'ST& Vk} v.dS
Q J m %k o2 J *n / J

It follows that if an inner product is defined by
(u,v) = j u, (%) v,(x) p(x)dx (2.48)
o) J J

then (2.45) holds for all u and v in the domain of A which satisfy
the boundary condition (2.20) or (2.21). Moreover, (2.48) defines
the inner product in the Hilbert space j( = LZ(Q,CJ,p(x)dx) of |
functions from £ to C® which are square integrable with respect to 5
the measure p(x)dx. Hence A, acting in the classical sense on
functions which satisfy (2.20) or (2.21), is a symmetric operator
in 3. Moreover, (2.47) implies that

PIIIINNN—=,



dl

2

|

Q)

u, du
G = | o060 — Lax s 0 (2.49)
Q jk axm Sxk

for all u in the domain of A by the assumed positivity of the
energy density, (2.35). It will be shown in section 8 below how
the domain of A can be enlarged to obtain a selfadjoint positive
extension A of A.

A Hilbert space ¥ and selfadjoint positive operator A on I
can be associated with each acoustic wave propagation problem by
the method indicated above. A theory of solutions of the initial-
boundary value problem (2.39) - (2.41) may then be based on A in
the following way. First of all, the problem can be formulated as
an initial value problem in #. A function u: PR -+ } is sought
such that

2
g—t'; +Aku=0 for all te R (2.50)
w(0) = f and iug(tﬂ)_ og An 3 (2.51)

The spectral theorem for A:

A= j” A dlI(}) ; (2.52)
0

and the associated operator calculus make it possible to construct
the generalized solution

u(t) = (cos t Al/z)f + (A"Y2 gin t Aliz)g (2.53)

The coefficient operators in (2.53) are bounded and hence u(t) is
defined for all f and g in X and defines a curve in C(R,H), the
class of continuous J(~valued functions on R. The differentiability
properties of u(t) depend on those of f and g. Two cases will be
mentioned.

2.4 Solutions in ¥

If f € X and g € ¥ then u(t) is continuous in ¥ and u(0) = £.
However, u(t) will not in general be differentiable, and hence
(2.50) and the second initial condition need not hold. 1In this
case u(t) coincides with the 'generalized solution in ¥ which was
defined and studied by M. Vishik and O. A. Ladyzhenskaya [32].
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2.5 Solutions with finite energy
If f € D(A‘/Z) and g € X then u is in the class
C!'(R,3) N C(R,D(aY?)) (2.54)

x This follows easily from (2.53) and the spectral theorem. Hence,
u satisfies (2.51) but (2.50) need not hold. In this case u(t)
coincides with the "solution with finite energy" which, for arbi-
trary domains §i{, was defined and studied by the author in (33,34,
42]. The existence and uniqueness of solutions with finite energy
was proved in [33,34].

f
I
£

3. PROPAGATICN IN HOMOGENEOUS FLUIDS

Propagation in an unlimited homogeneous fluid is analyzed in
this section. In the notation of section 2 this is the special
case where 2 = R® and p(x) = p and c(x) = c are constant for all
x € R}, It will be enough to treat the case c¢ = 1 since the gen-
eral case can be reduced to this one by the change of variable
ct » t. With these simplifications the wave equation (2.8) reduces
to the d'Alembert equation

92u 32

Q)Q)

and tie propagation problem is simply the Cauchy problem for G3E)E
The spectral and asymptotic analysis of solutions in L, (R3) of
(3.1) was developed in detail in [42]. Only the pr1nc1pa1 concepts
and results are reviewed here.

The operator in L, (R%®) defined by Au = —(Bzulax +3%u ’Bx +
Szulaxz) acting in the domain D(A) = D(R?), the L. Schwartz snace
of testlng functions, is known to be essentially selfad301nt [18].
Thus A has a unique selfadjoint extension in LZ(R ) which will be
denoted here by A,. This operator may be defined by

D(A.) =L_(RY r : + 32 +a—zﬂe L., (&) (3.2)
od * "“'é—f 3%2 T %3 2‘J ;
and
Z 2 2
A°u= - [g—;}i+-g—;(-2-+—3;)—2 for all u € D(AO) (3.3)

where the derivatives are interpreted in the sense of Schwartz's
theory of distributions. A, is known to be non-negative and it
is obviously real; that is

4 y
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Aju = Aju for all u € D(A)) (3.4)
where tﬁe bar denotes the complex conjugate.

The d'Alembert equation (3.1) will be interpreted as the
equation

d%u
qcz + Aou =0 (3.5)

for an Lz(Rs)—valued function. Hence the solution in L2(R3) of
the Cauchy problem can be written

u(t) = (cos t AY2)f + (A7Y2sin t A}/?)g (3.6)

where u(0) = f and du(0)/dt = g are in L2(R3). If it is assumed
that f(x) and g(x) are real-valued and

feL,RY, ge DAY (3.7

then it follows from (3.4) that

u(t,x) = Re {v(t,x)} (3.8)
vwhere

v(t,*) = exp (-itA}/?)n (3.9)
and

h=f+1A'2 geL, (R (3.10)

In what follows attention is restricted to this case.
An eigenfunction expansion for A, may be based on the
Plancherel theory of the Fourier transform in Lz(Ra). If

wo(x,p) = 15;%375 exp (i x*p), p € R} (3.11)

where x* p = x,p, + x,p, + x,p, then the main results of the theory
state that for all f € LZ(R3) the following limits exist

T(p) = (®,£)(p) = L,(R)-1im [ w, (x,p) £(x)dx

. | x| <M > (3.12)
£(x) = (D (0 = L,(R})-1lin w, (x,p) ”f(p)dpJ

il |p) <
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and 9,: Lz(na) > Lz(Ra) is unitary. These relations will often
be written in the symbolic form

-%(p) = J , wy(x,p) f(x)dx, £(x) = J 2 Wy (x,p) %(p)dp (3.13)
R

R

but must be interpreted in the sense (3.12). The utility of the
Fourier transform is due to the fact that if f and 9f/9x., are in
L,(R%) then 3

[¢o g%;J(p) = ip, £(p), 3 =1,2,3 (3.14)

In particular, it follows that
D(A,) =L, (R*) n {u: [p|%i(p) € L,(R®)} (3.15)

A, has the spectral representation

o

A, = Jo A dIT, (A) (3.16)

with spectral family {I[;(X)} defined by
(

} w, (x,p) £(p)dp, A 2 0 (3.17)
lpl</X

My (M £(x) =

It follows that A, is an absolutely continuous cperator [18,42]
whose spectrum is the interval [0,«).

The above results imply that ¢, defines a spectral represen-
tation for A, and functions of A,. In particular, if Y(}) is any
bounded Lebesgue-measurable function of A > 0 then

®,Y(ANE(R) = ¥(|p|DE(p) (3.18)

These results imply that the wave function v(t,x) defined by
(3.9) has the representation

v(t,x) = J 5 w,(x,p) exp (~itjp|) ﬁ(p)dp (3.19)
R

The function w,(x,p) is a generalized eigenfunction for A,. This
means that wy(+,p) is locally in D(Ao); i.e., ¢w,(*,p) € D(4;) for
every ¢ € D(R?) and

Agw,(*,p) = A w{*,p), A = |p|? (3.20)

The functions

, , ...“
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W, (x,p) exp (-it|p]) = ?5;%375exp {ix+p ~ tlph} (3.21)

are solutions of the d'Alembert equation which represent plane
waves propagating in the direction of the vector p € R®. Hence,
(3.19) is a representation of a localized acoustic wave as a
superposition of the elementary waves (3.21).

The spectral integral (3.19) is the starting point for the
asymgtotic analysis of the behavior for t » ® of solutions in
L,(R”) of the d'Alembert equation. It is convenient to begin the
analysis with the special case where h is in the class

Do(Ra) = D(R?® n (h: ﬁ(p)E 0 for lplf_a, a= a(ﬁ)> o} (3.22)

The analysis will then be extended to the general case by using
the easily verified fact that Do(Rg) is dense in Lz(Rs).

If ﬁ e 00(R3) and the support of h satisfies
supp hc {p: 0<a < |p| < b} {3.23)

then the spectral integral (3.19) converges both in LZ(R3) and
pointwise to v(t,x) and

exp {i(x*p - t|p])Ih(p)dp (3.24)

Jasiplsb

To find the behavior of v(t,*) € L,(R?) for t > « introduce
spherical coordinates for p:

P=pw, p >0, we€ S dp = p’dpdw (3.25)

where S? represents the unit sphere in R? with center at the origin
and dw is the element of area on S?. This gives the representation

b
we,® = gt | ¢ vie) pido (3.26)
a
where
V(x,p) = S NCDER (3.27)
.SZ

The asymptotic behavior of V(x,p) for lx( + © will be calculated and
used to find the behavior of v(t,x) for t -+ », Application of the
method of stationary phase [2,23] to (3.27) with x =r0, r > 0,

® € $? implies that if




2m 2T
ipr ipr

V(x,p) = [—-—J P h(o0) + [:T;—} e 1P L(-p8)

(3.28)
+ q,(x,p)

then there exists a constant M, = Mo(ﬁ) such that
la,(x,0)| < M /r? for all r >0, a<p<b and 6 & S2  (3.29)

Substituting (3.28) into (3.26) gives

v(t,x) = G(r-t,0)/r + G'(r+t,0)/r + ql(t,x) (3.30)
where G(1,6) and G'(1,0) are the functions of T € R and 6 € S2
defined by

b
6(1,0) = iy | et R(ob) (-1p)dp (3.31)
a
and
-a
6'(1,0) = Tyiz 2™ h(p8) (-1p) dp (3.32)
J -b

Moreover, the estimate (3.29) implies that ql(t,x) satisfies

lq, (t,x) | < M,/r? for all r > 0, t € R and 6 € S2 (3.33)
where M, = M, (h) = (2m)7¥2 (b - a%) M (F)/3.

The principal result of this section states that

v (t,x) = G(r-t,0)/r, x = b (3.34)
is an asymptotic wave function for v(t,x) in LZ(R3); that is,

lim Iv(t,*) - v (t,*)l 0 (3.35)

3 =
s L,(R?)
Before indicating a proof it is necessary to complete the statement
of the theorem by defining the profile G for arbitrary h & L:(Ra).
When h € Do(Ra), G is defined by (3.31) and a simple calculation

gives
1GI2 = h(p)|2%dp = Inl?
G Lz(Rxsz) Ja<| <lt()P)| dP Ih Lz(Ra)
= S (3.36)
= | hi 2
L, (R3)
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Hence the correspondence

h~>G=0h€L,(R xS?) (3.37)
can be extended to all h € LZ(R3) by completion. Another method,
based on the Plancherel theory in LZ(R,LZ(SZ)) is given in [42].
It is not difficult to verify by constructing 0! that

@: LZ(Rs) * L (R X $%) is unitary (3.38)
A similar extension of the definition (3.32) of G' may be made.

A proof of (3.35) will ncow be outlined. Note first that the
function G'(r+ t,0)/r tends to zero in L2(R3) when t - ©, This

follows from the simple calculation

00

j j 16" (r+ £,0) | 2dodr
o JS

J 3IG'(r-l-t,B)/rlzdx
R

(3.39)

fb f ) [6'(x,0)|%d6dr
t ‘S

‘ and the fact that G' € L,(R x $%). The proof that, in (3.30),
! q,(t,*) > 0 in L, (R?) when t » = is based on the following lemma.

3.1 Convergence lemma

Let 2 € R® be an unbounded domain and let u(t,x) have the

properties
u(t,*) € L,(R) for every t > t, (3.40)
1 . = 3
lim flu(t, )"LZ(KIQ) 0 for every compact K C R (3.41)
too
[uCt,x)| < M/|x|? for every |x| > Ly (3.42)
where t,, r, and M are constants. Then
lim Nu(t, )l = 0 (3.43)
e e (7))

Only the case Q = R} of the lemma is needed here. The more
general case is used in section 4. A simple proof of the lemma
is given in [42].

The proof of (3.35) for the case R e DO(RJ) may be completed ;
by applying the lemma to u(t,x) = q;(t,x). (3.33) states that q, (4

L | -




-

- 1‘..-.,(.
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satisfies (3.42) while (3.40) and (3.41) follow from (3.30). To
verify (3.41) note that G'(r+t,0)/r satisfies it by (3.39).
Moreover, if K € {x: |x| < R} then by direct calculation

[ |G(r-t,0)/r|%dx < J |G(r - t,0)/r|2ax
/K lx|<R
(3.44)
R R-t
= J J |6(r - t,0)|2dodr = J J |G(r,8)|2dedr
o Jg? -t Js?

The last integral tends to zero when t - © because G € L,(R X 855
Finally, v(t,x) satisfies (3.41). When h e Dy (R?®) this can be
verified directly from (3.24) by an 1ntegrat10n by parts.

The proof of (3.35) indicated above is valid when h € D (RY).
To prove (3.35) for general h € L,(R®) note that

v(t,*) = U,(t)h where U, (t) = exp (~itA3/2) (3.45)
is unitary. In particular,

IUo(t)ﬂ =1 for all t € R (3.46)
Similarly, if U (t): L,(R%®) » L,(R?) is defined by

o 0

v (£,) = U, (t)h (3.47)
then it follows from (3.44) and (3.36) that U:(t) is contractive:

U, (t)I <1 for all t € R (3.48)
The general case of (3.35) now follcws from the special case
he? (R%®), the density of 0 (R®) in L, (R?®) and the estimates
(3. 463 and (3.48). The detalls are g1Vgn in [42].

The real part of the asymptotic wave function (3.34) is another
function of the same form. Hence, (3.8) and (3.35) imply a similar
result for the solution in L,(R’) of the Cauchy problem. The result
may be formulated as follows.

3.2 Theorem

Let f and g be real-valued functions such that f € L, (R?*) and

g € D(A””). Let u(t,x) be the corresponding solution in L, (%)

of the d'Alembert equation given by (3.6). Define the asymptotlc
wave function
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T T 5(—’—?—91 e (3.49)
where

F(t,8) = Re {G(t,0)} (3.50)
and

G = Oh = O(f + 1A;'/%g) (3.51)
Then

lim Bu(t,*) - v (t,*)l

-0

L,(R?) =0 (3.52)

Stronger forms of convergence than (3.52) can also be proved
under suitable hypotheses on the initial state. In particular,
convergence in energy holds if the initial state has finite energy.
A result of this type is formulated at the end of section 4 for
the more general case of an initial-boundary vaiue problem for the
d'Alembert equation in an exterior domain.

4, SCATTERING BY OBSTACLES IN HOMOGENEOUS FLUIDS

The scattering of localized acoustic waves bv bounded rigid
obstacles immersed in an unlimited homogeneous fluid is analyzed
in this section. The corresponding boundary value problem is

3%u 3%u . ¥u  3fu) _

3c2 - [ax§ +-a—g+${—% =0 for t >0, x € Q (4.1)
88 .0 for £ 20, nE 8 (4.2)
v = k
u(0,x) = f(x) and 9u(0,x)/9t = g(x) for x € Q (4.3)

where @ C R?® is an exterior domain (i.e., I = R® - Q is compact) .
This problem will be treated as a perturbation of the Cauchy prob-
lem of section 3.

A formulation of the initial-boundary value problem (4.1) -
(4.3) which is applicable to arbitrary domains  C R® was given by
the author in [33,42]. That work provides the starting point for
the analysis of this section and sections 5 and 6. The principal
definitions and results are summarized here briefly.

The formulation makes use of the Hilbert space L,(2) and the
following subsets of L, ().
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L@ = L, 0 {u: 3u/dx; € L, (@ for j = 1,2,3) (4.4)
L (8,2) = L,(@Q) n{u: MueL, (@)} (4.5)
L;(48,2) = LI(Q) N L,(4,Q) (4.6)

where Au = azu/Bxf + azu/axg + 32u/8x§ denotes the Laplacian of u.
The derivatives in these definitions are to be interpreted in the
sense of the theory of distributions. The sets (4.4), (4.5) and
(4.6) are linear subsets of LZ(Q). Moreover, they are Hilbert

spaces with inner products

3
(u,v)1 = (u,v) + z (Bu/ij,Bvlaxj) (4.7) 1
j=1
(u,v)A = (u,v) + (Au,Av) (4.8)
(u,v)l &= (u,v), + (Bu,lv) (4.9)

respectively, where (u,v) is the inner product in L,(R).

4.1 Definition
A function u € L;(A,Q) is said to satisfy the generalized
Neumann condition for @ if and only if
3
(Au,v) + z (du/9ox
j=1
Note that (4.10) defines a closed subspace

459v/3x;) = 0 for all v € Li(Q)  (4.10)

LY(8,9) = L1(4,2) n {u: u satisfies (4.10)) (4.11)

in the Hilbert space Li(A,Q). The condition "u € L?(A,Q)" is a
generalization of the Neumann boundary condition (4.2). It is
meaningful for arbitrary domains . Moreover, it reduces to (4.2)
whenever 9f) is sufficiently smooth (see [42,p.41] for a discussion).

The construction of solutions of the initial-boundary value
problem (4.1) - (4.3) given below is based on the linear operator
A = A(Q2) in L,(§2) defined by

p(a) = LY(4,9) s Gty
Au = -Au for all u € D(A) (4.13)

The utility of this operator is based on the following theorem
which is proved in [42].

--ﬂ.uu-niiun-n-nIn-l-ilﬁ-hh--inllllIlIl--iuIllllliﬂlllllllﬁlllll."
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4.2 Theorem
Ais a selfadjoint real positive operator in L,(2). Moreover,
D(AY?) = L1(@) and
3
1AYV2u12 = § 13u/3x,1% for all ue D(AY2) (4.14)
j=1

The operator A may be used to construct "solutions in L,(Q)"
and "solutions with finite energy" of (4.1) - (4.3), as described
in section 2. The solution in L,() will be considered here. As
in section 3, if f € L,(Q) and g € D(A™!/?) then

u(t,x) = Re {v(t,x)} (4.15)
where

exp (-itAY?)h, h = £ + iA~V?g (4.16)

V(t")

The properties of the operator A stated in the theorem above
are valid for arbitrary domains ) C R}, It was shown in [42] that
if @ is an exterior domain then A has a continuous spectrum.
Moreover, if { has the local compactness property (defined below)
then there exist eigenfunction expansions for A in terms of gener-
alized eigenfunctions which are perturbations of the plane wave
eigenfunctions of section 3. In the remainder of this section the
eigenfunction expansions are described and used to analyze the
structure of solutions of the scattering problem (4.1) - (4.3).
The principal result of the analysis states that the behavior of
the acoustic field for large times is described by an asymptotic
wave function of exactly the same form (3.49) as when there is no
obstacle. The only effect of an obstacle is to modify the wave
profile ¥(t1,8). Moreover, a procedure is given for calculating
the modified profile when the obstacle and the initial state are
known.

4.3 Distorted plane wave eigenfunctions

Two families of generalized eigenfunctions of A, denoted by
wy(x,p) and w_(x,p) respectively, were defined in [42). They are
perturbations of the plane wave eigenfunctions w,(x,p) and have
the form

w,(x,p) = w,(x,p) + w,(x,p), p € R? (4.17)

where wi(x,p) and w'(x,p) may be interpreted as secondary fields
which are produced when the obstacle I' = R? - Q is irradiated by
the plane wave w,(x,p). Mathematically, w4(x,p) and w_(x,p) must
satisfy
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@+ |p|®» w,(x,p) =0 for x € Q (4.18)
aw.,_ (x,p)
—— =0 for x € 3N (4.19)
v

However, they are not completely determined by these conditions.
Instead, w,(x,p) is determined by (4.18), (4.19) and the condition
that wj(x,p) should describe an outgoing secondary wave. This is
implied by the Sommerfeld condition for outgoing waves:

dw! (x,p)
T ile] witkp) = oC[x|"D), Jx] > =
9|x]|
> (4.20)
Wl = 0Cx|™D), x| » )
Similarly, w_(x,p) is determined by (4.13), (4.19) and the condi-

tion that w!(x,p) should describe an incoming secondary wave,
which is implied by the Sommerfeld condition for incoming waves:

ow' (x,p) 3
——— + i|p| w' (x,p) = 0o(|x|7Y), |x| »

alxl > (4.21)
w! (x,p) = 0(|x|™)), [x| » = J

Of course, if 9 is nct smooth then the boundary condition
(4.19) must be understood in the generalized sense of (4.10). A
technical dlf‘lcu]ty is caused by the fact that ws(°,p) cannot be
in D(A) = LN (A,J) because the spectrum of A is continuous. This
is overcome by requiring that

dw, (+,p) € 1) (4,2) (4.22)

for all ¢ € D(R®) such that ¢(x) = 1 in a neighborhood of aR.
Generalized eigenfunctions with these properties will be called
"distorted plane waves," following T. Ikebe [16].

The uniqueness of distorted plane waves satisfying (4.18),
(4.20) or (4.21) and (4.22) was proved in [42] for arbitrary ex-
terior domains. However, to prove their existence it was necessary
to impose a condition on dfl. To defire it let

2 = an {x: |x| < R} (4.23)

Lfoc(ﬁ) = {u: ue LZ(QR) for every R > 0} (4.24)
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Loc .

l ,Loc foc =

@) n {u: 8u/8x €L, «@) (4.25)

for j = 1,2,3}

@) = L,

and define the

4.4 Local compactness property

A domain Q c R? is said to haonthe local compactness property
if and only if for each set S C L »*°¢(Q) and each R > 0 the
condition

Iull < C(R) for all u€ s (4.26)

L} (Q ) =

implies that S is precompact in L, (Q0g); i.e., every sequence {u }
in S which satisfies (4.26) has a subsequence which coaverges Ln

L, (). The class of domains with the local compactness property
will be denoted by LC.

The local compactness property is known to hold for large
classes of domains. S. Agmon has proved it for domains with the
"segment property" [l]. A generalization of the segment property,
called the "finite tiling property' was given by the author in
[42]. As an application of this condition it can be shown that
the local compactness property holds for the many simple, but non-
smooth, boundaries that arise in applications, such as polyhecdra,
finite sections of cylinders, cones, spheres, disks, etc. The
following existence theorem was proved in [42],

4.5 Theorem

Let  C R® be an exterior domain such that @ € LC. Then for
each p € R® there exists a unique outgoing distorted plane wave
wy(x,p) and a unique incoming distorted plane wave w_(x,p).

The outgoing (resp. incoming) property of w)(x,p) (resp.
w'(x,p)) is made explicit by the following corollary.
4.6 Corollary

Under the same hypotheses there exist functions
T,(0,p) € C “(s? x {R¥ - 0}) such that

eiilplr
Wi',(X:P) o T

T,(6,p) + wi(x,p), x =16 (4.27)
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where
wi(x,p) = 0(r™%), r > (4.28)

uniformly for 6 = x/r € S and p in any compact subset of R®- {0}.

In acoustics the functions T,(06,p) and T_(0,p) are called the
far-field amplitudes of the distorted plane waves.

4.7 The eigenfunction expansion theorem
Each of the families {w,(+,p): pE€E R3} and {w_(-,p): p € R%}

defines a complete set of generalized eigenfunctions of A in the
sense described by the following theorems.

4.8 Theorem
For each f € L,(?) the following limits exist

£.(p) = L,(R*)-1im J w, (x,p) f(x)dx
+ o M

M3
o > (4.29)
£(x) = L,(Q)-1lin J v, (x,p) T,(p)dp I
o lplav = 3

where @y = @ n {x: [x| < M}. Moreover, the operators

$,: L,(Q) > L,(R%) defined by

0,f = f, (4.30)

are unitary.

The relations (4.29) will usually be written in the symbolic
form

E+(p) = J w,(x,p) f(x)dx, f(x) = f w, (x,p) E+(p)dp
2 -+ B ¥ (4.31)

but must be understood in the sense of (4.29). f

4.9 Theorem

1f {II(\)} denotes the spectral family of A: |

-]

A= J A dII(A) (4.32)
0

. ,‘ o ' . . Illm|”i“|“...“
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then II(A) has the eigerfunction expansions

Q) £(x) = v, (x,p) £, (pP)dp, X >0 (4.33)

JIPIS/X

In particular, A is an absclutely continuous operator whose spectvrum
is the interval [0,»).

The last result implies that ¢, and ¢_ define spectral repre-
sentations for A in the sense of the following corollary.

4.10 Corollary

If ¥(A) is a bounded Lebesgue-measurable function of A > 0
then for all f € Lz(Q)

2 ¥WE(P) = ¥(|p|? f,(p (4.34)
These results provide a complete generalization of the
Plancherel theory to exterior domains § € LC.
4.11 The eigenfunction expansions and scattering theory
The results stated above imply that the wave functions
v(t,*) = exp (-itA¥?)h, h € L,(Q) (4.35)
have the spectral integral representations

v(t,x) = j y w,(x,p) exp (-it|p]) ﬁ+(p)dp (4.36)
gy ¥ +

Note that (4.36) defines two representations, corresponding to
wy(x,p) and w_(x,p). They will be called the outgoing and incoming
representations, respectively.

The representations (4.36) and the results of section 3 will
now be used to derive the asymptotic behavior of v(t,x) for t =+ o,
To begin consider an initial state h € L,(2) such that

h_€ D,(R) (4.37)

Such states are dense in L,(Q) because Uo(Rs) is dense in Lz(Ra)
and ¢_: L,(Q) ~ Lz(Ra) is unitary. The wave function corresponding
to (4.37) is
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v(t,x) = J , V_(x,p) exp (-it|p|) ﬁ_(p)dp (4.38)
R

where the integral converges both pointwise and in L,(R) to v(t,x).
; To discover the behavior of v(t,x) for t - ® substitute the
decompositions (4.17) and (4.27) for w_(x,p) into (4.38) and write

' v(t,x) = v, (£,x) + v'(t,x) + v"(t,x) (4.39)
where
% vo(t,x) = J ; wo(x,p) exp (—itlpl) ﬁ_(p)dp (4.40)
£ R
vi(t,x) =1 Ja exp {-i|p|(r+ )} T_(0,p) h_(p)dp  (4.41)
R
and
vie = [ v e ieloh B_Gar .42)
R

Note that v (t,x) is a solution in L,(R?) of the d'Alembert equa-
tion. Indeed, h_ = ®_h = ¢ (¥ ¢_h) = h, where

*
h, = ¢7¢_h € L,(R%) (4.43)

and

vo(ts) = [ [wo(on) exp (ielo]) Ryprep
> (4.44)
= exp (—itAé’z)h0

Thus v,(t,x) represents a wave in an unlimited fluid containing no

obstacles. It will be shown that v(t,x) is asymptotically equal

to this wave when t + »; i.e.,

lim lv(t,*) - Vo(t")"Lz(Q) =0 (4.45)

t
To see this note that, in (4.39), v'(t,x) has the form

v'(t,x) = G'(r+t,9)/r (4.46)

It was shown in section 3 that such functions tend to zero in
LZ(R3) when t » ® (sce (3.39)). It is easy to check that (4.37)
implies that G' € L,(R x oo Finally, condition (4.28) for
w'(x,p) implies that the term v"(t,x) in (4.39) satisfies




[v"(t,x)| < M/|x]|? for all [x| >0 and t € R (4.47)

with a suitable constant M. Hence, the convergence lemma of
section 3, applied to v" = v - v, - v' implies (4.45) if v'"(t,x)
satisfies the local decay condition (3.41). For v'(t,x) this
condition follows from (4.46). For v(t,x) and v,(t,x) it follows
from the local compactness property. A proof may be found in
[42]). Thus (4.45) is established for all h_ € DO(Ra). The main
result of this section is the

4.12 Theorem

For all h € L,(Q) if v(t,*) = exp (~itAY2)h and vo(t,*)

= exp (-itA}/?) (Qﬁ@_)h then

lim Iv(t,*) - vo(t,°)ﬂ =0 (4.48)

troo

L, (®)

This result follows immediately from the special case (4.37)
proved above, the density of DO(R3) in L,(R”) and the unitarity
of the operators exp (-itA!/?), exp (—itA&z), o, and ¢_.

4.13 Corollary

If Jg: L,(R) » Lz(Ra) is defined by Jgu(x) = u(x) for all
x € Q and JQu(x) = 0 for all x € R} - Q then the strong limit

W+ = w+(A;/2,A1/2,JQ) =s-1im exp (itAén)JQ exp (-itAl/z) (4.49)

to
exists in L,(Q) and W,: L,(R) > L,(R?) is given by
W, o= O (4.50)

In particular, W, is unitary.

+

The operator W, is the wave operator for the pair KR
in the sense of the time dependent theory of scattering. The
‘equivalence of (4.48) and (4.50) is proved in [42].

4.14 Asymptotic wave functions in L, (Q)
The wave function in Lz(R3) defined by
vo(t,*) = exp (-1tA}*)hg, h, = ¢50_h (4.51)

has an asymptotic wave function in Lz(Ra), by the results of
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section 3; i.e.,

i»i: 19 (E,%) = v7(E, )by sy = O (4.52)
where

v(t,x) = G(r-t,0)/r, x = rb (4.53)
and

G = 6h, = 0030 h (4.54)

L)

Equations (4.48), (4.52) and the triangle inequality imply the

4.15 Theorem

For each h € L, () the wave function vw(t,°) defined by
(4.53), (4.54) is an asymptotic wave function in L,(Q) for v(t,*)
= exp (- itAI/Z)h, that is,

lim Iv(t,*) - v (t,*)l

t>o

L, () =0 (4.55)
4.16 Corollary

The profile of the asymptotic wave function is given by
1 itp 3
G(t,0) = Tn iz r e e h_(pB) (-ip)dp (4.56)
0

where the integral converges in L,(R x S?).

This follows immediately from (4.54) and (3.31). Note that
the only difference between the asymptotic wave functions for I
and those for ! is that h = ¢ h is replaced by h_ = &_h.

4.17 Asymptotic energy distributions

If the initial state h € L,(Q) has derivatives in L, (P) then
the corresponding profile G and asymptotic wave function v (t X)
will have corresponding derivatives. In particular, the followiag
result was proved in [42].
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4.18 Corollary

I1f dh(x)/9x

€ L,(R2) for j = 1,2,3 then 9v(t,x)/dt and
Bv(t,x)laxj are {n L,(®) for all t€ R and j = 1,2,3 and

it B3v(e, ) /3t = vi(e, )l oy =0 ]
> (4.57)
s Bav(t,*)/ax; - ?(t,-)an(g) =0, 3=1,2,3 |
where
vi(£,%) = G (r - £,0)/r, k = 0,1,2,3 (4.58)
Gy (T,0) = ~3G(T,8) /T (4.59)
G,(1,8) = ~Go(T,0)0,, § = 1,2,3 (4.60)

and G(T,€) is‘given by (4.56).

The energy integral for a homogeneous fluid is given by

2 3

1 du(t,x) du(t,x)

EQu,K,0) =3 J; <[[—l”%;ii“] = [-i%g§33-] j> dx  (4.61)
31

if p =1, ¢ = 1., The last corollary implies that if u(t,x)
= Re {v(v,x)} is a solution with finite energy in Q then the
energy in any measurable cone

Cufe=rd: £>0, 6€¢ c &} (4.62)
has a limit as t > ® which can be calculated from the initial

state u{0,x) = f(x), du(0,x)/ot = g(x). The following result was
proved in [42].

4.19 Theorem

, If f € L;(Q), g €E L,(R) and if C is any measurable cone in
R? then

Lin E(u,C 01 2,8) = 3 f [lplE_(p) + i8_p) [2dp (4.63)
£ C
5. PROPAGATION IN UNIFORM TUBULAR WAVEGUIDES

The propagation and scattering of localized acoustic waves
is simple and compound tubular waveguides with rigid walls, and
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filled with a homogeneous fluid, is analyzed in this section and
the next. The simplest case is the uniform semi-infinite cylinder,
closed by a plane wall perpendicular to the axis. Other special

—_——

Figure 1. Uniform semi-infinite cylindrical waveguide.

cases which are of interest in applied acoustics include the cyl-
indrical waveguide terminated by a resonator, the tubular

-
e

- i - = e o] - —

Figure 2. Cylindrical waveguide terminated by a resonator.

‘waveguide with a bend, or elbow, coupled cylindrical waveguides
with different cross-sections, the T-joint in & waveguide, uniform
waveguides containing an iris, waveguides containing obstacles,
and many others.

The most general compound tubular waveguide considered here
is described by a domain @ C R? of the form

anousluszu---usm (5.1)

‘ "I
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Figure 3. Waveguide with elbow.
L
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Figure 4. Coupled waveguides.
4 /
] A '
‘\:) 27N '\)
it

Figure 5.

Waveguide with T-joint.
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T

Figure 6. Waveguide with iris.

where {; is a bounded domain and S,,Sz,°°‘,Sm are disjoint uniform
semi-infinite cylinders. If 2 is a waveguide with rigid walls,
filled with a homogeneous fluid, the corresponding boundary value
problem is again problem (4.1) - (4.3), but for a domain with the
structure (5.1). Hence, the Hilbert space formulation of (4.1) -
(4.3) given at the beginning of section 4, which is valid for
arbitrary domains @ C R®, provides a starting point for the anal-
ysis of the waveguide problems. The remainder of this section
presents the spectral and asymptotic analysis of acoustic waves
in a uniform semi-infinite cylindrical waveguide. The general
case (5.1) is analyzed in section 6.

5.1 The uniform semi-infinite cylinder
It will be convenient to use coordinates

(x,s%,,¥) = (x,9) € R (5.2)

such that the y-axis lies in the waveguide. With this choice the
waveguide may be described by a domain of the form

$ = {(x,y): x€ G and y > 0} (5.3)

where G C R? defines the waveguide cross section. It will be
assumed that G is bounded and that S € LC.

The spectral analysis of the operator A = A(S), acting in
L,(S), will be based on the spectral analysis of A(G) acting in
L,(G). It can be shown that the hypothesis S € LC implies that
G € LC as a domain in R?. This property and the boundedness of
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G imply that A(G) has a discrete spectrum with eigenvalues

B X 20y S A5 2 oo k280
such that

lim A, = (5.5)

joo

Each eigenvalue has finite multiplicity and it is assumed that in
the enumeration (5.4) each eigenvalue is repeated according to its
multiplicity. There exists a corresponding orthonormal set {¢.(x)}
of eigenfunctlons which is complete in L,(G). Each ¢; satisfies

¢ € D(A(G)) = L (A,G) and A(G)ds = A ¢J Formally, the ¢j(x) are
solutions of the eigenvalue problem

2 2
94 +—i32+)\¢=0forx€G ]
(2.9 3x2
> (5.6)

9 _
v 0 for x € 9G

Of course, if 9G is not smooth then the boundary condition is the
generalized Neumann condition defined in section 4. It is known
that the first eigenvalue A, = 0 is simple with normalized
eigenfunction

by (x) = T6%77f= const. (5.7)

where |G| is the Lebesgue measure of G.

5.2 The eigenfunction expansion

The eigenfunctions of A may be constructed by separation of
variables. From a more sophisticated point of view, A is a sum of
tensor products

=AG) R1+1C& A(R,) (5.L)

where Ry = {y: y > 0}. It follows that the eigenfunctions of A
are products of eigenfunctions of A(G) and A(R;). The spectral
analysis of A(R,) is given by the Fourier cosine transform in
Lz(R+):

: N1/2 M
£(p) = L,(R)-1lim {E] J cos py f(y)dy (5.9)
Moo 0
A2 M =
f(y) = L2(R+)—lim {— j cos py f(p)dp (5.10)
Moo m) 0
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I'E = I £l (5.11)

i

L, (R,) L, (Ry)
It follows that a complete normalized family of generalized eigen-
functions for A is defined by

cos py ¢j(x)’ p € R+$ Jre= 051551252

2] 1/2
(5.12)

Wj(ny»P) = {F

The Plancherel theory for A(G) and A(Ry), quoted above, implies
that

M

fj(p) = L, (Ry)-1lim J [ w.(x,y;pf f(x,y)dxdy (5.13)
Moo J
0 G
exists for all f € L,(S), and the operator ¢.: L,(S) » L, (Ry)
defined by ¢jf = fj has range ¢jL2(S) = L2(Ri). Moreover
00
I£12 = IE. 02 .14
Basy Tl MR el
j=0
and
N M
£(x,y) = L,(S)-lim § w, (x,y,p) f.(p)dp (5.15)
M, N-o 5 : J J
J:

The relations (5.13) and (5.15) are frequently written in the more
concise symbolic form

£.(p) = J 5., B dxdy (5.16)
j 5
and
£t,5) = § JR wi(x,y,0) £ (pdp (5.17)
j=0 4

but must be understood in the sense of (5.13) and (5.15).

Note that, formally, £ (p) is just the L,(S) inner product of
f(x,y) and the eigenfunctioa (5.12). For a more detailed discussion
of this expansion see [21].

The generalized eigenfunctions (5.12) are locally in D(A) and
satisfy
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Ay (y,p) = =bui(e,0,p) = (p? + ApwiCy,p) (5.18)

This fact and the Plancherel theory imply the following construc-
tion of the spectral family of A.

5.3 Theorem

If {II(A\),X > O} denotes the spectral family of A = A(S) then
II(A\) has the eigenfunction expansion

=N
MY £Ge,y) = ) J wGe,y,p) ,(p)dp
AN i
(5.19)
. )
ChY iz 5
& Z 0 = cos py tj(p)dp ¢j(x)

A.<A
3=

for all A > 0. In particular, A is an absolutely continuous oper-
ator whose spectrum is the interval [A,,®) = (0,®).

Note that the sum in (5.19) is actually finite by (5.5).
(5.19) implies that the eigenfunction expansion (5.17) defines a
spectral representation for A in the sense of the following
corollary.

5.4 Corollary

If ¥Y()) is any bounded Lebesgue-measurable function of A > 0
then for all f € Lz(S)

N
‘y(A) f()\,y) = LZ(S)-lim Z FW.(X,}’,P) W(Pz‘*’)\.) 2-(P)dp
j=0 0
(5.20)

The eigenfunction expansion (5.17) defines a decomposition of
the Hilbert space L,(S). To describe its properties let f € LZ(S)
and define

o R P 7 (]
Pj f(x,y) = [JG ¢j(x ) £(x',y)dx ] ¢j(X)

(5.21)
-~ fj(y) ¢j(X), 3 =0,1,2,%"
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where
fJ(}’) = J ¢j(X') f(x',y)dx', = 0,1,2,%° (5.22)
G

The orthonormality of {¢.} in L,(G) implies that {Pj: §j=0,1,2,%04}
defines a complete famil§ of orthogonal projections”in L,(S):

P, =P, PP

§Bi = SyiPy for ik = 0,1,2,¢¢¢ (5.23)

] EB.o=3 (5.24)
j=0

Moreover, a simple calculation gives

TORNES RTATE j WP YE2 A E (P (5.29)

]
Ry

for j = 0,1,2,***. 1In particular,

ij(x,y) = J wj(x,y,p) fj(p)dp (5.26)

Ry

%
An equivalent operator-theoretic representation is P, = ¢j¢ If

b g
Hy = PiL,(S) = {f(x,y) = Eje () £ € L,(R)} (5.27)

then (5.23) - (5.25) imply the

5.5 Corollary

The direct sum decomposition

co

L(s) = 1 & (5.28)
3=0

is a reducing decomposition for A.

Note that each ¥(, is isomorphic to LZ(R+) under the mapping
£(x,y) > £5() defined by (5.22).
5.6 Solutions in L,(S) of the propagation protlem

Only the case where f € L,(S) and g € D(A"/z) will be die-
cussed. As in sections 3 and 4, the solution in L,(S) of the
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propagation problem (4.1) - (4.3) has the form
u(t,x,y) = Re {v(t,x,y)!} (5.29)

where

v(t,*,*) = exp (~it AY?)h, h = f + 1A7Y2%€ L ,(5)  (5.30)

The decomposition (5.28) implies that

v(t,x,y) = 7§ vj(t,x,y) in L,(S) (5.31)
3=0
where
vi(£x,5) = Pav(t,x,y) = v(t,y)0,(x) € L,(S) (5.32)
with
) 172 -itw, (p) .
v, (t,y) = [—] J cos py e h, (p)dp (5.33)
j m % 3
+
and
wi(P) = (% + Ap¥E 2 A2 >0 (5.34)

In the theory of waveguides (5.31) is called a modal decomposition
and the partial waves v.(t,x,y) are called waveguide modes.

v (t,x,y) will be said %o be in mode j of the waveguide S. In
particular, mode O

vo(t,x,y) = vo(t,y)/|G]2 (5.35)

will be called the fundamental mode of S. It is not difficult to
show that

uy (t,y) Re {vo(t,y)}
( y+t (5.36)

%— {f4(y-t) + £,(y+t)} +% J 8o (y")d'

n

y-t
where f,(-y) = f,(y) and g,(-y) = go(y). Note that the modal

waves propagate independently in the sense that different modes
are orthogonal in L,(S) for all t.

The spectral representation (5.31), (5.32), (5.33) will now
be used to study the asymptotic behavior for t = ®© of solutions
in L,(8). Because of the independence of the modes it will be
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enough to study the individual modal waves (5.33). The substitu-
tion 2 cos py = exp (ipy) + exp (-ipy) gives the decomposition

vylt,y) = v}(t,y) + vyt (5.37)
where
£ X 1 1(yp-woy(p)) .
vj(t,Y) = Vj(t,-y) = Gmz JR e hj(p)dp
+ (5.38)

and the integral converges in Lz(R+) (and in L,(R)) for each
h; € L2(R+). The special case of the fundamental mode is discussed
first.

5.7 Asymptotic wave functions for the fundamental mode

This case is closecly relatecd to that of secticn 3, since
wo(p) = p for all p &€ R,. Thus

vie,y) = 75#3775 JR AU P L pyap =6, (y- ) (5.39)
+

where

Gy (¥) = 75 P §, () dp € L, (R) (5.40)

o\ = omie . e o (P)dp 2 '

Moreover, it is easy to verify by direct calculation that v;(t,y)
= vt(t,-y) = G, (-y-t) > 0 in L2(R+) when t » «, Thus

[ o]

Vo(ta}') = Go()"t) (5.41)
is an asymptotic wave function for v,(t,y) in L,(Ry):

lim v, (t,*) - vy (t,*)I

. =0 5.42)
o0 L2 (R+) (

for all hy € L,(R,).

For the higher order modes j > 1 the functions w,.(p)
= (p2+ A,)'? with XAy > 0. For these cases the spect%al integrals
(5.38) ail have the same form, differing only in the value of A:
and the function hj € L,(Ry). The asymptotic behavior of these
integrals may be determined by the method of stationary phase, as
follows.
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5.8 Application of the method of stationary phase

Consider the wave function defined by

v(t,y,\,h) = (2m)~ /2 f exp {i(yp- tw(p,)))h(p)dp (5.43)
R

where &

w(p,A) = (p2+ M) V2 > A2 59 (5.44)
and

h € LZ(R+) (5.45)

The phase function
G(P,A:Yst) =Yyp ~ tw(P’A) (5-46)

is stationary with respect to p if and only if

38(p,X,y,t)/9p = y - tdw(p,A\)/3p = 0 (5.47)
or

Y o dw(p,)) - =

T 3p = U(p,A) = ('pif)jm (5.48)

The function U(p,\) defined by (5.48) is the group velocity [5]
for the wave function (5.43). Note that

U(p,A) _ %w(p,A) _ A
op - ot Gt 0 e

and hence U(p,A) is a monotone increasing function of p. Moreover,
0 <U(p,A) <1 forall p>0and A >0 (5.50)

Hence for t > 0 equation (5.48) has the unique solution

2 1712 2y Y1/2
A o el
if
0 <y/t<1 (5.52)

and has no solution for other positive values of t. The principle
of stationary phase asserts that for large values of y2+ t? the
stationary point (5.51) will make a contribution
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ei(yp-tw(P,}\)-“/‘*)

v o(t,y,\,h) =y {%) h(p), (5.52
(£3U(p,A)/d3p) /2
SN

& ltz_ sz 1/2

to the integral (5.43), where x(y/t) is the characteristic function
of the set (5.52). More precisely, if h € D(R;) then the following
error estimate is known [2,23].

5.9 Theorem
Let h € D(R+) and define the remainder q(t,y,A,h) by
v(t,y,A,h) = v (t,y,A,h) + q(t,y,A,h) (5.54)

Then there exists a constant C = C(A,h) such that

laCt,y,A,h) | < c/(y2+t2) %" for all yE€E Rand t > 0 (5.55)

It follows from (5.54) and (5.55), by direct integration, that
for all h € U(R+)

lim lv(t,*,A,h) - v”<t,-,x,h)nL w0 (5.56)
2\

t>o

The stationary phase method is not applicable to (5.43) when A = O.
However, the results for this case are described by the same

equations if

vm(t,y,o,h) = (21T)"1/2 J exp (iyp) h(p)dp (5+.57)
R

+
With this notation, (5.56) with A = 0 is equivalent to (5.42).

The estimate (5.55) implies (5.56) for all h € p(R,). For

more general h € L2(R+) the estimate (5.55) may not hold. Never-
_theless, the following results hold.

5.10 Theorem

For all A > 0 and all h € L2(R+)

v7(t,*,A,h) € L,(R,) for all t # 0 (5.58)
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t > vm(c,°,k,h) € LZ(R+) is continuous for all t # 0 (5.59)

Iv(t, *, A, b))l < Ihi

L,(R) = "L, (R) for all t # 0 (5.60)

Moreover, the relation (5.56) holds for all h € Lz(R+).

Properties (5.58) - (5.60) follow from the definitions (5.53),
(5.57) by direct integration. Moreover, the validity of (5.56) for
all h € L,(R,) follows from the special case h € D(R+), the density

of D(Ry) in L,(Ry) and the uniform boundedness in t of
lv(t,-,A,h)ﬂLz(R+) and liv (t,-,A,h)HLz(R+). More detailed proofs

may be found in [22,40].

5.11 Asymptotic wave functions for the higher order modes

Define the modal asymptotic wave functions by

v?(t,y) = v”(:,y,xj,ﬁj), §=0,1,2,00" (5.61)
Then (5.38), (5.43) and (5.56) imply

s ©
lim v, (t,*) = v.(t, )l
m VJ( ) VJ( ’ )

t >0

W 0, j =0,1,2,%¢° (5.62)

Moreover, (5.38) for V; and (5.43) imply

Vj(tsY) o V(ty_yyljphj)
(5.63)

= (ZTr)-l/2 I exp {-i(yp+-tw(p,lj)} ﬁj(P)dp

By

The stationary phase method, applied to (5.63), implies that

e i 9 )

t >0

0 (5.64)

_because the phase yp + tw(p,A.) in (5.63) has no stationary points
when y > 0 and t > 0. Combinlng (5.37), (5.62) and (5.64) gives

Lim 1y, (t,*) - vo( 0 (5.65)

Sl =
i T W0 8

for all h, € L,(R,) and j = 0,1,2,**+. The results and the
decomposi{ion (5.31), (5.32) imply the
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5.12 Asymptotic convergence theorem

For all h € L,(S) define

v(t,x,y) = v;°<c,y> 6,60, (x,y) €8 (5.66)
j=0
Then :
: 1
v(t,*,*) € L,(S) for all t # 0 (5.67)
t + v(t,*,*) € L,(S) is continuous for all t # 0 (5.68)
v (t"")“Lz(S) < “h“LZ(S) for all t # 0 (5.69)
and
ti: fv(t,*s°) - v (t,-,')HLz(S) =0 (5.70)

The proof of this result will be outlined. First, note that
the convergence in L,(S) of the series in (5.66) follows from the
orthogonality of its terms in L,(S), (5.60) which implies

>

brgSeecitghh s RO g5 N, ) o
for all t # 0 and (see (5.14))
2 = & 2 o
e zo ke ey < (5.72)
j=

Properties (5.68) and (5.69) follow from (5.59) and (5.60), applied
to vj(t,y). Finally, to verify (5.70) note that for j = 0,1,2,°*"

< v

lvj(t,-)_ j(t")”Lz(R+) < j(t")"Lz(R+) + nvj(:,-)u

L,(R)

(5.73)

for all t # 0. It follows that

'V(t,.,') & Voo(t’.’.)"f,z(S) = Z Ivj(t,') o vj(t,.)“f‘z(R+)

§=0
(5.74)




44

N £ (5.74 Cont)
o 2 i 2
° - X L] h
< 7 by, (€, 0) = Ve, )an(R+) +4 )1 jan(R+>
j=0 j=N+1
for N = 0,1,2,*++. Fixing N and making t > © gives, by (5.65)
(o<}
i I hoy2
tif: ,V(ta ’ ) v (t; s )"LZ(S) f, 4 z ﬂhjﬂLz(R+) (5.75)
=N+1 '

for N = 0,1,2,*«+. Thus (5.70) follows from (5.72) and (5.75).

1f f € L)(S) = DQL”?) and g € L,(S) then the same method
can be used to show convergence in energy:

lim E(u - u,S,t) = 0 (5.76)

oo

where um(t,x,y) = Re {v (t,x,y)} but the details will not be
recorded here. ;

6. SCATTERING BY OBSTACLES AND JUNCTIONS IN TUBULAR WAVEGUIDLS

The analysis of section 5 is extended to compound tubular
waveguides in this section. The mathematical problem is the
initial-boundary value problem (4.1) - (4.3) for an unbounded
domain 2 C R® of the form

=0,V S A, Sh (6.1)
where 2, is a bounded domain and Sys***,S are disjoint uniform
semi-infinite cylinders. Examples include waveguides of the types

described at the beginning of section 5 and many others. It will
be assumed that §. € LC.

6.1 Notation
It will be convenient to think of R® as a 3~dimensional
differentiable manifold. The generic point of R® will be denoted
by q. A special Cartesian coordinate system
o Gy - o _a
(X?,xz,y JE(R L yI)IER (6.2)

may be associated with each semi-infinite cylinder Sa (a=1,***ym)
in such a way that

8, " {q e R*: x*(q) € G, and v*(q) > 0} (6.3)
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where G. C R is a bounded domain. The assumption that § € LC
implies that Gy € LC for o = 1,***,m and hence that each A(Ga) has
a discrete spectrum with eigenvalues

RE NS S SR (6.4)
such that
ii: Aaz = ® (6.5)

and corresponding eigenfunctions
Oy &M = 176,12, 9 M)y 8y, (™) o0 (6.6)

which form a complete orthonormal sequence in Lz(Gq)'

6.2 Solutions of Aw = Aw in Sa

Sugpose that w is locally in D(A); i.e., ¢w € D(A) for every

¢ € D(R’). Then the completeness of the eigenfunctions (6.6)
implies that
o0
wi@ = § w oM ¢ ,x% for all g€ S 6.7)
q al al ! d
2=0

where x* = xa(q), ya = ya(q). Moreover, if
Aw = \w in Sa (6.8)
then the coefficients wag(ya) will satisfy
il 7Ot 5 o _ o
wal(y ) + (A= A ) w,(y) =0 for all y~ > 0 (6.9)
In particular, if it is assumed that
A# Aal; o =1,°*,m; L =0,1,2,°°° (6.10)

then
v (yH = ¢t exp {i/A-X ya} + C_, exp {-1/A-X ya}(ﬁ 11)
PTAM ag *P ol ol ol :

where, for definiteness, ul/z >0 for u >0 and

(A‘ kag)
i A019~ i 1/2
i(AdQ- A) for A< AG

Y2 for A > A
al (6.12)

2

— =
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6.3 Eigenfunctions of A and non-propagating modes

It was discovered by F. Rellich [27] that the operators A for
waveguide regions of the form (6.1) may have a point spectrum. A
point A € R is in the point spectrum of A if and only if there is
a non-zero function w € D(A) such that Aw = Aw. In particular,
the requirement that w € L,(2) implies that in the expansions
(6.7), (6.11) the coefficients C¥, = C7, = 0 for A > A,y and

5 al N al
Cag = 0 for A < Aal‘ Thus any eigenfunction of A must have the
form

w(q) = I g em -0 -0 P 6% 61D
{R:A<Aa£}

for all q € S . In particular, the eigenfunctions are exponentially
damped in eac% cylinder Sa'

D. S. Jones [17] has shown that the point spectrum of A is a
discrete subset of (0,®); i.e., each eigenvalue has finite multi-
plicity and each finite subinterval of (0,®) contains at most a
finite number of eigenvalues. Thus if the point spectrum of A is
not empty then there exists an M such that 1 <M < ® and A n)

1 <n <M, is an enumeration of the eigenvalues of A, each repeated
according to its multiplicity. It may be assumed that

0 <A for 1 <n < ntl < M (6.14)

<
(n) - )‘(n+l)
The corresponding eigenfunctions will be denoted by w nd The
subspace spanned by {w  y: 1 < n <M} will be denoteé gy HP(A)
and called the subspace of discontinuity of A [18]. Thus

ey = v Poewass §oleltew (6.15)
1<n<M 1<n<M
It is known that
L, (@) = ¥P(a) ® ¥°(a) (6.16)

where HC(A), the orthogonal complement of ﬂp(A) in LZ(Q), is that
largest subspace of L,(2) on which the spectral measure of A is
continuous. HC(A) is called the subspace of continuity of A [18].
Moreover, (6.16) is a reducing decomposition for A [18].

If the initial state of an acoustic field in Q satisfies
u(0,*) = f € }®(A) and du(0,+)/dt = g € IP(A) then h = f + jA~Y2g
€ HP(A) and hence
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v(t,q) = exp (-itAY?) h(q)
(6.17)
= -1£A /3
I ey o (F10A) v (@)
1<n<M

It follows that the energy of the acoustic field u(t,q) = Re{v(t,q)}
in any bounded portion of @ is an oscillatory function of t. 1In
particular, there is no propagation of energy in the cylinders Sa'
For this reason the eigenfunctions W(n)(q) are called non-
propagating modes of the waveguide. By contrast, it is shown
below that for fields with initial state in X©(A) the energy in

every bounded portion of ? tends to zero when t -+ ® and hence all
the energy propagates outward in the cylinders Sa‘

6.4 Generalized eigenfunctions of A

The operator A has two families of generalized eigenfunctions,
analogous to the functions wy(x,p) and w_(x,p) of section 4, each
of which spans the subspace #H®(A). The structure and properties
of these functions are described next.

Consider a single term in the expansion (6.7) for the cylinder

Sa' It has the form (cf. (6.11))

V(@) = (c;2 exp (1A= X, y°}
(6.18)
+ C;Q exp {-i/ﬁfri;;'ya}) ¢a2(xa)

where q ¢ (xa,ya). Assume that A > Aaz’ so that (6.18) represents
a propagating mode in Sa’ and write

- () - 1/2
P (A Xaz) >0 (6.19)
and

/2 - & 2 1/ 2 1/2 )
A2 3w, (p) = (p? + 2,0 V2 > AN (6.20)

If one associates a time-dependence exp {-i)!?t} = exp {-iwak(p)t}
with (6.18), as in the spectral representation of v(t,*)
= exp (-1tAY?)h, then

W, (@) exp {-iw ,(p)t} = C;l exp {1(py® - w () &) }o_ o (x%)
(6.21)

+ C;gexp {-i(pyai-wag(p)t)}¢al(xa)
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is the sum of an outgoing wave in S,, with coefficient C;Q, and an
incoming wave with coefficient Cyg. For this reason, a solution
of (6.8) of the form

Cog exp (ipy™) 6, (x™) (6.22)

will be called an "outgoing' wave in Sa in mode 2, while a solution
of the form

Coq €xp (=ipy™) 0,0 (x%) (6.23)

will be called an "incoming' wave in Sy in mode £. Note that this
terminology is based on the convention that the time-dependence is
exp (- iwag(p)t), as in (6.21). If a time~dependence exp (1wu (p)r)
were used it would be necessary to interchange the terms ouL501ng
and "incoming."

In the case of the uniform semi-infinite cylinder of section
5, m is equal to 1 and the generalized eigenfunctions have the form

wo(x,y,p) = ?E#?TTT exp (ipy) ¢g(x)
(6.24)

it Ti#?Tﬁf exp (~ipy) ¢, (x)

Thus they are the sum of an incoming and an outgoing wave in mode
2, with equal amplitudes and phases. This symmetry is due to the
symmetry of the waveguide. In the general case of a compound
waveguide (6.1) it is possible to prescribe the amplitudes and
phases of the incoming (resp., outgoing) waves in eacn cylinder S
and mode 2. The amplitudes and phases of the outgoing (resp.,
incoming) waves in each cylinder Sg and mode m are thereby deter-
mined. The most useful generalized eigenfunctions are those that
have an incoming (resp., outgoing) wave of prescribed amplitude
and phase in a single prescribed cylinder Sy and mode 2. They may
be described as follows.

6.5 Definition

The mode (o,%)-outgoing eigenfunction for {{ is the function
waz(q,p) defined by the properties

wl,(+sp) is locally in D(A) (6.25)
(A - wég(p)) WZQ(q’p) = (A + wég(p))WZQ(q’p) &0 (6.26)

for all q € @ and
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6
Ol,L(q,p) ?5—;3r-exp (-1py®) ¢a2(x )
x (6.27)
+ ) CZQ’Bm(p)exp {i/pzi-kal-xg; y8}¢8m(x6)
=0

for all q € Sg (B=1,2,°**,m). Similarly, the mode (a,%)-incoming
eigenfunction for Q is the function w_,(q,p) defined by the prop-
erties that w 2( ,P) is locally in D(%g, (Ai—waz(p))w g(q p) =0
for all q € Q and, for q € SB (B=1,2,°°+,m)

s
Wag(@P) = Tz exp (ipy®) 6y (<D
© (6.28)
+ 1€y an(e exp (-0/FFI R yPheg F)
m=0

where —i/p2+-x - A < 0 for AB > A ot T bs
The eigenfunction wal(q,p) may be interpreted physically as

the stecady-state acoustic field in the waveguide § due to a single
incoming wave (6. 23) in cylinder S and mode %, with amplitude and
phase defined by C 2(p) 1/(211)1 , and no incoming waves. in the

other cylinders or in the other modes of cylinder S,. The ampli-
tudes and phases of the corresponding outgoing waves are defined by
the coefficients Cal Bm(p) which are determined by the incident wave
and the geometry of Q. Note that, in general, an incoming wave in
mode (a,%) will produce outgoing waves in all the cylinders and
modes; i.e., scattering produces coupling among the cylinders and
modes.

The form of the exponential which multiplies ¢Bm(x8) in (6.27)
is determined by the requirement (6.26). Note that Ehe sum in
(6.27) includes propagating modes with Agm < Aqg + Pp° and modes
"beyond cutoff" w1th ABm > Xy p?. The latter decrease exponen-
tially when yB

The elgenfunctlons w Q(q p) have an interpretation analogous
to that of wag(q p), but w1th 'outgoing'" and "incoming' inter-
changed. It is easy to verify from the defining conditions that
the two families satisfy the relation

vy (2:P) = wgi(q,p) (6.29)
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The case of the uniform semi-infinite cylinder is a very spe-
cial case in which m = 1 (so that no index a is needed) and

WI(Q,P) o WE(Q,P) = WQ(X,Y,P), q « (x,y) (6.30)

(see (6.24)). Moreover, in this case the symmetry implies that
there is no coupling between different modes:

Chn(® = 8 /M2 (6.31)

I+

s

+ Existence and uniqueness theorems for the eigenfunctions
wye(q,p) were proved in [21]. The following notation will be used
to formulate then.

2@ = {peRy: p? + Ay € op(A)} (6.32)
where op(A) = {X = A(n): 1 <n<M}. Similarly,
2,5 (Gg) = Ipc R, P’ + Ay € o(A(GB))} (6.33)

where O(A(GB)) = {\ = ABQ: & =1,2,°+¢}. Finally

m
Zyy = Loy () Y U Z40,(G) (6.34)
B=1

and

m oo
Z = U U Zogo (6.35)

o=l 2=1

Note that the information on the spectra of A(G,) and A given
above implies that each of these sets is a denumerable subset of

R+. The results of [21] imply the following theorem.

- 6.6 Theorem

Let € LC be a waveguide domain of the form (6.1). Then for
each p€ R, -~ Z, each a = 1,°**,m and each £ = 1,2,*** the eigen-
functions wzz(',p) and w&z(',p) exist and are unique.

6.7 The eigenfunction expansion theorem

The families {W&Q(',p): pE R=-Z; am]l,°**m; L= 0,1,2,¢°¢}
and {waz(',p): PE Rg-2; a=1,***,m; 2=0,1,2,+++} define two
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complete sets of generalized eigenfunctions for the part of A in
the subspace of continuity #“(A). The eigenfunction expansions,
which are of the Plancherel type described in the preceding sec-
tions, may be formulated as follows.

6.8 Theorem
Define
a a
SG.,M " {q € R*: x (q) € GCX, and 0 <y (q) < M} (6.36)
and
QM=Q°USI,MU...USm’M (6.37)

Then for all f € L,(R) the limits

A i ey :
£,0(P) = Lz(zil—lim J v o(a,p) £(q) qu (6.38)
QM
exist, where dV_ is tge element of Lebesgue measure in R Morc-
over, the opera%ors - ol L,(82) » L,(Ry) defined by ®&£ = aR

have range L, (Ry) dnd if PC denotes the orthogonal projection of
L, () onto ¥°(A) then

m [+ o]
2 - 2
(Dasily (8 = yOY g jLnL L(RY) (6.39)
a=1 2=0
for all f € L,(), and
M
c + ~%
P°E(q) = L, (W-1im ) J J waQ(q,p) fal(p)dp (6.40)
L L a=1 2=0 0

The relations (6.38) and (6.40) will be written in the
symbolic form

£,0p) = J Wop (,P) £(a) 4V (6.41)
Y/
m o
Pr@) = [ ] J weg(a,p) fo0(p)dp (6.42)
a=1 2=0 ‘R

+
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but they must be understood in the sense of (6.38), (6.40). The
following corollaries are almost immediate; see [13,21].

6.9 Corollary

For each f € LZ(Q) the limits

t . + At
£f0(@) = L,(0)-1lim v o(a,p) £ o (p)dp (6.43)
Moo 0
exist and
£ i
(fal’fﬁm)Lz(Q) = 0 whenever (a,2) # (8,m) (6.44)
Moreover,
m [o o]
(= ks )
S A Y (6.45)
o=1 %=1

6.10 Corollary

Define

* *
g = Uy €L : fELE] (6.46)

L £

+ +
Then each ¥(;y is a closed subspace of 1€ (a), Mél and ﬂém are
orthogonal whenever (a,%) # (B,m) and

m m
@ = § Jex, =1 ] e, (6.47)
o=1 =1 o=1 %=1

The eigenfunction expansions (6.40) provide the following
construction of the spectral family of A in IE @) .

6.11 Theorem
If {II(A\): A > 0} denotes the spectral family of A then
/A=A,

= a2+ -
TVP°E(Q) = § wo(a,p) £, (p)dp (6.48)

o=1 Aagfx 0
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for all A 2 0. In particular, AP® is an absolutely continuous
operator whose spectrum is [0,%).

Note that the sums in (6.48) are actually finite because
g > ® when £ + ©, (6.48) implies that the eigenfunction expan-
sions (6.40) define spectral representations for A in the sense
of the following corollary.

6.12 Corollary
If Y(A) is any bounded Lebesgue-measurable function of XA 2 0
then for all f € “(A) = P°L,(R)

oo

¥Y(a)f(q) = ] ] J wék(q,p) ¥(p* + Aal)géz(p)dp (6.49)
o=l 2=1 R,

It follows from (6.47) and (6.49) that the eigenfunction ex-
pansions (6.40) define reducing decompositions of ¥€(A). More
precisely, the following generalization of the results of section
5 is valid [13,21].

6.13 Corollary

+
The operator Pal defined by Paﬂf = f&l is an orthogcnal pro-
jections of L,(§t) onto M‘l and

m o
cI e :
pre 11 %, (6.50)
a=1 2=1
Moreover,
* *
PaQH(A) = H(A)Pal for all A > 0 (6.51)

and hence (6.47) defines reducing decompositions for AP®,

The surjectivity of ¢él‘ L,(Q) -~ L, (R ), the definition of
P;l and (6.43) imply that for all a = 1, "',m and £ = 1,2,°°"°
+ + + + +%
Pa2 ®a£ ¢a2’ o, b, =1 (6.52)

In particular the eigenfunctlon mappings ¢ 2 are partial isometries
[18] with initial sets ﬂ“g and final sets (R Y
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6.14 Solution in #°(A) of the propagation problem

Only the case where f € L,(Q) and g € D(A—’/z) will be dis-
cussed here. For such initial states it follows, just as in
sections 3, 4 and 5, that the solution in L,(R) of (4.1) - (4.3)
has the form

u(t,q) = Re {v(t,q)} (6.53)
where
v(t,*) = exp (-itA@Y?h, h = £ + A®) Y5 € L,(Q) (6.54)

Moreover, the case where h € 3P(A) was discussed above. Hence,
only the case where h € J€(A) remains to be analyzed. In this
case v(t,*) € ¥“(A) for all t € R and (6.47) implies that v(t,q)
has the decompositions

m (oo}

+
v(t,9) = § § vi,(t,q) in X(A) (6.55)
a=1 %=1

where

o gy = exp (eAE) VeyH
TS P al
(6.56)
= wzl(q,p) exp (-itwal(p)) hég(p)dp

R

+
and wyg(p) is given by (6.20). The two decompositions defined by
(6.55), (6.56) will be called modal decompositions, in analogy
with the simple case of section 5, and the partial wave vyg(t,q)
will be said to be in mode (%*,a,%) of the compound waveguide Q2.
Note that for the uniform semi-infinite cylinder of section 5 the
(+,2) and (-,%) modes coincide (see (6.30)).

6.15 Transiency of waves in ﬂC(A)

The absolute continuity of the operator A in the subspace
ﬂc(A) implies that all waves in #(A) are transient in the sense
of the following theorem [38,42].

6.16 Theorem

If @ € LC is a waveguide domain (6.1) then for every h € MC(A)
and every compact set K C R®
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lim jexp (—itAln)hH

g

L, (k%) =0 (6.57)

Thus the decomposition L,(Q) = 3®P(A) @ 3€(A) splits every
h € L,(R) into a sum of a non-propagating and a propagating state.
In particular the partial waves

& W by 1/2 +
vog(ts®) = exp (-1tAV2) P b € #E(A) (6.58)
and hence (6.57) with K = ﬁ: implies
+
lim ﬂvag(t, )an(Qo) =0 (6.59)

Lt

for a = 1,2,¢**,m and 2 = 0,1,2,***. Thus waves in MC(A) ulti-
mately propagate into the cylinders S,. The eigenfunction expan-
sion for A will now be used to calculate the asymptotic form of
these waves,

6.17 Asymptotic wave functions

Let h € ¥°(A) and consider the representation
m o0
. = - 1/2 = = .
v(t,*) = exp (-itA"“)h = Z z val(t’ ) (6.60)
a=1 £=0

defined by the incoming eigenfunctions w;Q(q,p). Substituting the
development (6.28) for wgo(q,p) in Sg into the integral (6.56) for
V;Q(t,q) gives the representation

- i o e o
val(t’q) ¥ Gasv(t,y ’AaZ’ha2)¢a2(x ) + V&E(t’q)’

(6.61)
q € SB
where v(t,y,A,h) is defined by (5.43) and
' = ' B B .
Vagl(t’Q) = z vaSL,Bm(t’y ) ¢’Bm(x )y q € SB (6.62)
m=0

with
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Vk -)\
Bm "ol
V&Q,Bm(t’Y) = exp (—/ABm-AaR-pz )

x exp (-itw (p)) Cy o (PIHS, (P)dp
(6.63)

oo

+ exp {~i(¢p24-haz— ABm y%-twaz(p))}

XBm—Aal

x C&z,em(p) h&R(p)dp

This equation defines V&Q’gm for the case where g, > Aal' In the
case where Mgy < Ay¢ the first integral is absent and the second
has the lower limit zero. The method of stationary phase may be
applied to show that v'g 8 (t,y) satisfies an estimate of the form
(5.55) for y 2 0, t 2 §*seTause the integrals in (6.63) have no
points of stationary phase in this region. It follows that

lim Ivl, (e, )l =0, 8=1,2,**",m (6.64)

tr©

Lz(SB)
The proof may be based on a convergence lemma like that of szection
3. The details will not be given here. See [22] for a more
complete discussion.

In (6.61) the term v(t,ya,A Z,RZQ) has the form (5.43) studied
in section 5. Hence, if vm(t,y,%,h) is defined as in that section
and

o = (s ] o N o [0}
val(t,q) = v (t,y ’xal’hak) ¢a2(x ), q € Sa (6.65)
then (6.64) and the results of section 5 imply

lim “val(t'.) - 0l

troo

Sanal(t")“Lz(SB) = P

B = l’z’ana’m

In particular, v&l(t,') > 0 in L,(Sg) for t » « and all § £ o
i.e., v;z(t,~) is asymptotically concentrated entirely in Sa'

The asymptotic wave functions for v{t,q) will be defined
by n
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m oo
vt = T ] x (@ vg(t,@), q€Q (6.67)
o=1 2=0

where X,(q) denotes the characteristic function of Sy. Note that
the terms in this sum are orthogonal in L,(R) by (6.65). The de-
compositions (6.60), (6.67) and the convergence results (6.59)
and (6.66) imply the

6.18 Theorem

If @ € LC is a waveguide domain (6.1) then for every h e 3(A)
the wave function v(t,e) = exp (~itA12)h satisfies

lim fv(t, ) - v (t,*)I

£t

L, () =0 (6.68)

The proof is essentially the same as for the special case
described in section 5. The convergence in energy, when h has
finite energy, can be proved by the same methods.

7. PROPAGATION IN PLANE STRATIFIED FLUIDS

The propagation of localized acoustic waves in a plane strati-
fied fluid which fills a half-space is analyzed in this section.
The asymptotic wave functions for such media are shown to be the
sum of an asymptotic free (hemispherical) wave and an asymptotic
guided wave which propagates parallel to the boundary. This
structure, which is intermediate between that of a homogeneous
fluid and that of a tubular waveguide, is called an open waveguide
in the physical literature.

7.1 Plane stratified fluids

An inhomogeneous fluid will be said to be plane stratified if
the local sound speed c(x) and density p(x) are functions of a
single Cartesian coordinate. This condition can be written
elx,,x,,x;) = c(x;y) ]
> (7.1)

P(x,,x,,%,) = p(x,) J

with a suitable numbering of the coordinates. It will be convenient
to denote x, by a single letter and write




%= (x .x.) €& R%, y = %X, ER, (x,7) € R? (7.2)

This notation is used in the remainder of this section.
7.2 Propagation in a stratified fluid with a free surface
A stratified fluid filling a half-space
Ri = {(x,y): x € R? and y > 0} (7.3)

is often used as a model in the study of acoustic wave propagation
in oceans and deep lakes. If the surface {(x,0): x € R?} 's free
the corresponding initial-boundary value problem is (see section 2)

32%u > 9 1 du
84 _ 2 y)oly) [ } = 16 Ba e 0
L Gy (003) By 7.
(x,y) € R
u(t,x,0) = 0 for t > 0, x € R? (7.5)
U(O’x’}') = f(st) and 3u(0,x,)')/3t = g(X,Y)
(7.6)

for (x,y) € Ri

where in (7.4) j is summed from 1 to 3 and x, = y. c(y) and p(y)
are assumed to be Lebesgue measurable on Ry * {y: y >0} and to
satisfy

0<c, <cly)

1IN

CZ<°°
> for all y € R, (7.7)
0<pyp <p(y) p, <o J

where Ci» C,s Py and p, are suitable constants.

7.3 Hilbert space formulation

The operator i

13
Au = -cZ(y)p(y) 3371‘ (5‘(‘;)_ S'xﬂj_] e
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was shown in section 2 to be formally selfadjoint with respect to
the inner product

e J L 059 v,y) ¢TAy) 67 (y)dxdy (7.9)
R
+

where dxdy denotes integration with respect to Lebesgue measure
on Ri. The corresponding Hilbert space is

¥ = L,(R},c2(y) p~!(y)dxdy) (7.10)

The solution of the initial-boundary value problem (7.4) - (7.%)
given below is based on a selfadjoint realization of A in ¥(. To
define it let D(R+) denote the Schwartz space of R+ and D'(R )
the dual space of all distributions on R+ The Lebesgue space
Lz(Rt) can be regarded as a linear subspace of D' (R+) Note that
L,(R}) and ¥ are equivalent Hilbert spaces by (7.7). Let

LR = L,(RY n {u: du/dxy € L,(RY, j =1,2,3L  (7.11)

denote the first Sobolev space of Ri. It is a Hilbert space with
inner product

3
(u,v), = (u,v)y + J (Bu/dx
3=l

where (u,v), is the inner product in L, (R ). D(Ri) defines a
linear subset of L (R ) and hence

(7.12)

3v/8xj)o

j’

L3*°(R}) = closure of D(R}) in L}(R}) (7.13)

is a closed linear subspa e of Lj(R}). It is known that all the
functions in L1 °(R+) satisfy the Dirichlet boundary condition
(7.5) as elements of L ,(R?); see [19] and [43,Cor. 2.7].

A realization of the operator A in ¥ will be defined by
D(A) = Ly °(R)) n {u: Au €30} (7.14)

and

Au = Au for all u € D(A) (7.15)
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To interpret the condition Au € 3 in (7.14) note that if u € L! (R )
then p 1(y)au/axJ €L (R+) for j = 1,2,3. The second derivative

in (7.8) may therefore be interpreted in the sense of D' (R+) Thus
Au € D'(R ) and the condition Au € ¥ is meaningful.

The selfadjointness of A in X may be proved by the method of
[43,82]. Another proof may be based on the theory of sesquilinear
forms in Hilbert space [18,Ch. 6]. These methods imply the

7.4 Theorem

A is a selfadjoint real positive operator in (. Every u € D(&)
satisf1es the Dirichlet boundary conditlon (7.5) as an element of
L,(R*). Moreover, D(A'?) = L},°(R}) and

3
1AY2y) 2 = ) [9u/d3x. |2p™ ! (y)dxdy
. L (7.16)
-=l R3 / 5
. + for all u € D(AY?)

The operator A may be used to construct 'solutions in ¥('' and
“"solutions with finite energy" of (7.4) - (7.6), as described in
section 2. The detailed analysis of the structure of these solu-
tions will again depend on the construction of an eigenfunction
expansion for A. For simplicity, the construction will be described
here for a special choice of the functions c(y) and p(y). Never-
theless, the results obtained are typical of a large class of
stratified fluids.

7.5 The Pekeris model
This name will be used for the stratified fluid defined by

s By ch
c(y) = < (7.17)
L C2s Yy 2h

Py>s 0<y<h
p(y) = < (7.18)
lpzs ¥2h

where ¢c,, ¢,, P, P, and h are positive constants. This model was
used by C. L. Pekeris [26] in his study of acoustic wave propaga-
tion in shallow water. The model represents a layer of water with
depth h, sound speed ¢, and density p, which overlays a bottom,
such as sand or mud, with sound speed c, and density p,.
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Figure 7. The Pekeris Model

The most interesting case .occurs when
c, < ¢y (7.19)

and this condition is assumed to be satisfied in what follows. A
detailed study of the Pekeris operator was given by the author in
[43]. Here the main results of [43] are reviewed and used to
derive the asymptotic wave functions for the Pekeris model.

7.6 Eigenfunctions of A
It was shown in [43] that A has a pure continuous spectrum and

a complete family of generalized eigenfunctions was constructed.
These functions w(x,y) are characterized by the following

properties
w is locally in D(A) (7.20)
Aw = \w for some X > 0 (7.21)
w(x,y) is bounded in Ri (7.22)
w(x,v) = @M} P u(y), p e r? (7.2%

where, in (7.23), w(y) is independent of x. The eigenfunctions are
of two types, called free wave eigenfunctions and guided wave
eigenfunctions. Their definitions and physical interpretations
follow.
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7.7 Free wave eigenfunctions

These functions exist when the eigenvalue A satisfies
& = ellplt e cllpl® |pl* =0} + p (7.24)
To define them let

£=(Mc2 - [p|DHYY2 >0, n= (2 - [p|HY2 >0 (7.25)

and
wo (%,y,p,2) = (2m)7! S wo (y,p,1) (7.26)
where
sin ny , 0 <y <h
wo (y,p,A) = a(p,A) < (7.27)
Yo Em 2O oy (g,me B0 sy
with
Yi(&,n) =-% [sin nh 3z %2-%?-cos nh (7.28)
1

In (7.27), a(p,A) is a positive normalizing constant. It was
shown in [43] that the eigenfunction expansion takes its simplest
form when

a(p,A) = p§/2/2<v£)‘/2|Y+(£,n)| (7.29)

In physical terms, the eigenfunction wo(x,y,ﬁ,k) represents
an acoustic field with time dependence exp (-itAY?) which is the
sum of two plane waves in each layer. It may be interpreted as a
plane wave which propagates in the region y > h, is refracted at
y = h, reflected at y = 0 and refracted again at y = h; s=ee
Figure 8 where the propagation directions are indicated. It can
be verified that Snell's law of refraction is satisfied at y = h
and the law of reflection is satisfied at y = 0.




63

Air

(p,~n) (p,n) Water

Bottom
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Figure 8. Ray diagram for free wave eigenfunction

7.8 The dispersion relation

For values of A which satisfy
cflplz <A< c§|p|2 (7.30)

the function wy(x,y,p,A) defined by (7.23) - (7.28) still satis-
fies conditions (7.20), (7.21) and (7.23). However, (7.30) im-
plies that & is pure imaginary, say

EwaE', £ = (lp]® =~ MeDYi >0 (7313

while n is still real and positive. It follows that w (x,y,p,A)
satisfies the boundedness condition (7.22) if and only if

y_(ig',n) =0 {7:32}

or, by (7.28),

g' = - %zn ctn nh | (7.33)
1

For A and |p| which satisfy (7.30), (7.33) is equivalent to the
sequence of equations
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1
bR = (k- —]5)17 b gan= L [ﬁ‘-g—-] o= 1,0, v (7.34)
p,N

where |tan™! a| < w/2. Each equation (7.34) defines a functional
relation between |p| and X or, equivalently, betwcen |p| and

o - X142 (7.35)
The solutions, which will be denoted by

X =2 e, 0 =w e = 2 (|p)/? (7.36)
represent a relation between the wave number |pl of the plane
waves in w (x,y,p,A) and the corresponding frequencies w. Such
relations are called dispersion relations in the theory of wave

motion. The relations (7.34), (7.36) were analyzed in [43] and
found to have the following properties.

7.9 Properties of wk(lpl)

For each k = 1,2,3,°°* define

p, = e, /2n(c} - ]2, p = (2k - 1)p, (7.37)
Then

wk(lp]) is analytic and wl"(|p|) >0 for |p| > Py (7.38)

cilpl < w (Ip]) < ¢ lp| for |p| > p (7.39)

w (p) = c,pp, wp(p) = ¢, (7.40)

wk(lpl)rv c,lp| for |p| + = (7.41)

Moreover, an explicit parametric representation of the dispersion
curves (7.36) was given in [43].

7.10 Guided wave eigenfunctions

The functions w, (X,y,p) = wo(x,y,p,kk(lp’)) are, by construc-
tion, the solutions of (7.20) - (7.23) for eigenvalues which
satisfy (7.30). It was shown in [43] that there are no solutions
of (7.20) - (7.23) when A < c?|p|®. The functions wk(x,y,p) have
the form

T
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v (6y,p) = M7 e P v (y,p) (7.42) ;
where | j
1 sin n (|p])y ,0<y<h !
w (y,p) = a, (p) < (7.43)
=& (p]) (y-h)
sin nk(lpl)he s ¥>h
with
el = O (lph/e? - [p]5)2, }
> (7.44)
Exlinly = ¢lpl® « X (lphytci) J
In (7.43), ak(p) is a positive constant which is determined by
the condition

00

lw (750) |2 c72(y) o7 (y)dy = 1 (7.45)
0

In physical terms, the eigenfunction wk(x,y,p) represents an
acoustic field with time dependence exp (~itwk(|p|)) which corre-
sponds to a plane wave which is trapped in the layer 0 < y < h by
reflection at y = 0 and total internal reflection at the interface
y = h. In the layer y > h the field is exponentially damped in
the y-direction and propagates strictly in the horizontal direction
p; see Figure 9 where the propagation directions are indicated.

Air
Water
Bottom :
P
Exponential —_—— —_—— &
Damping
—— —_—

Figure 9. Ray diagram for guided wave eigenfunctions
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7.11 The eigenfunction expansion

The free wave eigenfunctions w,(x,y,p,A) are parameterized by
the region

Qy = {(p,A): p € R? and ci!p[z <% e r? (7.46)

Similarly, the guided wave eigenfunctiouns wk(x,y,p) are parameter~
ized by the regions

Q = {p: [p] > pls k=1,2,000 (7.47)

The following expansion theorem was proved in [43]. First of all,
for every f € i the limits

£,(ps0) =

M (7.48)
L, (2¢)-1im J ! Wo (X,¥,P20) E(x,y)c™2(y)p” ! (y)dxdy
b |x] o

and

’Ek(P) 5

M (7.49)
L, (@) -lim J 1 W (%, 7,p) £05,y)c”2(y)p” ! (y)dxdy,
R ‘xliM k = 1,2,"'

exist and satisfy the Parseval relation

(-]

1612 = § a2 (7.50)
x= Lo, @
Moreover, if
Q? = {(p,A): p € R? and ci|p|? < A < M}
> (7.51)
2 = (p: py < lpl <,k =2,2,00

then the limits
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£o(x,y) = ¥-Lin j v, (%,7,,1) E, (p,A)dpd) (7.52)
Moo M
Q0
and
£,(x,y) = ¥-lin J v (6Y,p) £ (P)dp, k = 1,2,00+  (7.53)
Moo QM
k
exists and satisfy
M
£(x,y) =3-lim  § £, (x,¥) (7.5¢)
Mo -0

The relations (7.48), (7.49), (7.52), (7.53) and (7.54) will also
be written in the following more concise symbolic forms, in analo-
gy with the notation of previous sections.

%o(p’)‘) = l WO(X;)’,Ps)\) f(xs}’) C_z(}') p_l(y)dxdy (7.55)

3
L

£.0) = J w (6,y,p) £(x,y) ¢ 2(y) o~ (y)dxdy,

R} (7.56)
k = 1'2’0-.

£,(x,y) = J wo (%,¥,p,1) £, (p,))dpd) (7.57)
Q0

£, (x,y) = J v (x,7,p) £, (p)dp, k = 1,2, (7.58)
0"

£(x,y) = § £ (x,y) | (7.59)
k=0

Equations (7.55) - (7.59) are the eigenfunction expansion for
A and show the completeness of the generalized eigenfunctions de-
fined above. The representation is a spectral representation for
A in the sense that, for every f € D(A),

(A£);(p,A) = X £ (p,}) (7.60)
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and
DL = A\ (p]) £ (@), k = 1,2,+++ (7.61)

The representation (7.55) - (7.59) defines a modal decomposi-
tion for the Pekeris model. It was shown in [43] that if

Jck = {fk: fEX Ci, k = 0,1,2,90¢ (7.62)

then each ﬂk is a closed subspace, ¥ and ¥, are orthogonal for
k L
k # 2 and

= ] & 1 (7.63)
k=0

Moreover, it was shown that (7.60), (7.62) imply that (7.63) re-
duces A. In fact, more was shown in [43]; namely that

¢kf = fk (= Lz(Qk), k =0,1,2,°°° (7.64)
defines an operator
¢k: ﬁ’+ Lz(Qk), k =0,1,2,°°° (7.65)

which is a partial isometry with initial set ﬂ} and final set
Lz(ﬂk); i.e., '

* = * = = oo A
O b, =Py, B 0 =1, k=0,1,2, (7.66)

where P, is the orthogonal projection of ¥ onto Hk.

7.12 Solution in ¥ of the propagation problem

Attention will again be restricted to the case where f € K
and g € D(A"/z) so that the solution in I has the form

u(t,x,y) = Re {v(t,x,y)} (7.67)
with

v(t,*,*) = exp (-1tAY?)h, h = f + A"V ¢ ¥ (7.68)
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The modal decomposition of v(t,x,y) is

«Q

v(t,x,y) = ] v (t,x,y) (7.69)
where

vo(t,x,y) = [ wo(x,y,p,k)exp(—itAVz)ﬁo(p,A)dpdA (7.70)
Q

0
and

v (£,x,y) = [ w, (x,y,p) exp (-itw, (|p|))h, (p)dp,
Qk (7.71)
k= 152,
Moreover, the modal waves vk(t,x,y) are independent in the sense
that they are orthogonal in J( for every t € R because (7.63) is a
reducing decomposition of A. Asymptotic wave functions for each

mode will now be calculated beginning with the guided modes Vs
k> 1,

7.13 Asymptotic wave functions for the guided modes (k > 1)

If the representation (7.42) for the eigenfunctions wk(x,y,p)
is substituted into (7.71) the spectral integrals takes the form

vk(t,x,y) =
(7.72)
2| exp (iGeep-tw ([p[)) duy (v, p)fy (pdp, K = 1,20+
9)
k

where wk(y,p) is defined by (7.43). The behavior for large t of

" these integrals will be calculated by the method of stationary

phase. In the present case the integral is a double integral
(2, c R?) and the phase function
k

O (prx,t) = x*p - tw ([p]) (7.73)

is stationary with respect to p if and only if




70

30k(p,X.t)

P
> = x; - ewp(lpD) T;H'= 0, § =1,2 (7.74)

In particular, the number and distribution of the stationary
points is determined by the group speed function for the kth
guided mode:

u e = willeD, ol 2 p (7.75)

The defining relation (7.34) for wk(lpl) implies the following

7.14 Properties of Uk(lpl)

For each k = 1,2,3,°*+ there exists a unique pA > p, where
U, ( A) = 0 and > Moreov ke
Kk Py Py > Pg- eover,
A -

A
0 < Uy = U (p) < uk(lpl) < ¢, for all |p| > Py (7.76)

urClp]) <0 for p < |p| < pp and U;(p]) >0

A (7.77)
for |p| > p,

lim Uk(lpl) =c,, lim Uk(lpl) =c, (7.78)
Ipl+p, lp]oe

These properties are indicated in Figure 10.

ﬁ
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Figure 10. The Group Speed Curve q = Uk(lpl)
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The stationary points of 8y (p,x,t) are defined by (7.74).
‘ This may be written in (2-dimensional) vector notation

| x/t = Uk(lpl)pllpl (7.79)
{
| This is equivalent to the conditions
Uk(lp[) = |x|/t (7.80)
and
p is parallel to x and in the same direction (7.81)
since U, (|p]) > 0 and t is assumed to be positive. Conditions

(7.80) and (7.81) determine |p| and p/[pl, respectively. In
particular, it is clear from Figure 10 that

For |x| > c,t and [x]| < Uﬁt there are no points of
stationary phase

For c;t < |x| < c,t and |x| = Uﬁt there is one point >(7.82)
of stationary phase '

For UAt < |x| < c,t there are two points of
stationary phase J

According to the method of stationary phase each stationary
point where det (BZGk/Bpiapj) # 0 (regular stationary point) con-
tributes a term

exp (10, (p,x,t) + 1 7 sgn (3%6,/3p,3p;)) 3

— w (y,p)hy (p) (7.83)

2 1/2
|det (3 ek/apiapj)l

to the asymptotic expansion of the integral (7.72), where sgn and

: det denote the si§nature and determinant, respectively, of the

F Gramian matrix (3°6,/3p.dp.). A short calculation shows that the
eigenvalues of the Gramiandfor (7.73) are —tUi(Ipl) and —tUk(lpl)/{pl
and hence for t > 0

sgn (a2ek/apiapj) -1 - sgn UL(ipl) (7.84)

det (a’ek/apiapj) = tzUk(lpl)Ué(lpl)/lpl (7.85)
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In particular, the stationary points are regular when |p| # pﬁ.
Substitution of (7.73), (7.84) and (7.85) into (7.83) gives
the function

V:(t,x,Y,P) =
(7.86)

Il/zexp {i(lxllpl-twk(]pl)-% - % sgnUL(]pl))}

e (el Jupclp)¥?

|p

v (v,p) by (p)

To find the asymptotic wave function for vy (t,x,y) it is necessary
to solve (7.79) for p and substitute in (7.86). The result may be
described by means of the two inverse functions of Uk(|p|) which
may be defined as follows: see Figure 10.

f A
|pl = Pk(q) = Uk(lpl) q and pk s lpl < pk }
>

(7.87)

A
lpl = Pz(q) © Uk(lpl) = q and lPI 2 Py

It is clear from_the discussion of Uk(IPl) that Pf and Pﬁ are analy-
tic functions, Py maps {q: Uﬁ < q < ¢,} onto {]pT: P < Ipl < P}
and P} maps {q: Uy < q < c,} onto TIpT: lpl > pyt

The asymptotic behavior of v, (t,x,y) can now be described.
The point of stationary phase |p| = PE(|x|/t) makes a contribution

vorf (e m,y) = X (60 Vi, x,y,PE(x|/0x/[x]) (7.88)
where

xi(t,x) is the characteristic function of
(7.89)

{(t,x): Ui‘ < xl/e < o,}

Similarly, the point of stationary phase |p| = Pi(lxl/t) makes a
contribution

vt S(t,%,y) = xp(6,%) vi(t,x,y, B (x| /6)x/|x]) (7.90)

where
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x:(t,x) is the characteristic function of
: (7.91)
{(t,x): U, < |x|/t < ¢,}

The functions v:’f are called the '"fast waves" because they de-
scribe waves which arrive at points (x,y) at times t = |x|/c2
corresponding to the speed c(y) = c, of waves in the "fast" me-
dium filling y > h. Similarly, the functions vﬁ’s are called the
"slow waves' because they describe waves which arrive at (x,y) at
times t = |xl/c1 corresponding to the speed c(y) = c, of waves in
the "slow" medium filling 0 < y < h. Finally, the total asymptotic
wave function is the sum

o, f @,
V:(t9x)Y) = Vk (tsx’Y) + Vk s(tsan) (7.92)

The following convergence theorem was proved in [40] by the method
outlined in section 5.

7.15 Theorem

Let h € . Then for each k > 1, v:(t,',') € ¥ for all t > 0
and t > vz(t,',') € ¥ is continuous. Moreover, vﬁ(c,*,') is an
asymptotic wave function for the modal wave v (t,*,*)
= exp (-itAY2) Pih; i.e.,

lim tvy (€,°,°) - "z(t"")“x =0 (7.93)
t-’oo

The same methods were used in [40] to prove convergence in
the energy norm when h has finite energy.

Note that v:(t,x,y) represents a guided wave which propagates
radially outward in horizontal planes y = const. and is exponential-
ly damped in the vertical coordinate y. This 1is evident from the
defining equations (7.86), (7.88), (7.90) and (7.92).

7.16 Asymptotic wave functions for the free mode

It will now be shown that the free mode wave function vo(t,x,y)
is asymptotically equal in ¥ to a free wave propagating with speed
¢, in the half-space y > h. To this end note that

vo(t,x,y) = —%F exp {i(x~p-tA1/2)} wo(y,p,k)ﬁo(p,l)dpdk

2
f (7.94)
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where ﬁo € L,(2,). The representation (7.27) for wy(y,p,A)
implies that

vo (£,%,5) = v, (t,%,y-h) + v (£,x,5-h), y > h (7.95)
where
i(xe —ex /2 ~
Vit %y) = o ‘ e PHYETEATE) (5,00 v, (€, (p,N)dpdi
2 (7.96)
and
& O e ~
vo(6,%,9) = o [ et PN 45,0 v_ (€, (p, M) dpa
@ (7.97)
The change of variables
(P,)) » (p,q), q = &= (\/c? - |p|H)/? (7.98)
in (7.96) gives
sptyq-twip,qs)3,
v:(t,x,y) = TE#T“E‘ ] o Phya-tulp q’)h(p,q)dpdq
420 (7.99)

where

h(p,q) = C§o§/2(2lql)1/2(Y+(£,n)/lv+(€,n)l)ﬁo(p,k) (7.100)
and

A= Ap,q) = w(p,q)? = c2(|p|* + q*) (7.101)
Similarly, the change of variables

(p,A) * (pya), q = =€ = =(\/c3 - [p|D)}? (7.102)
in (7.97) gives
ei(x'p+yq-tw(p,q))ﬁ(p’q)dpdq

- 1
vo(t,x,y) = a7 [
120 (7.103)
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where h is defined by (7.100). Adding (7.99) and (7.103) and
using (7.95) shows that

il

vo(t,x,y+h) = (2#)3%? J j gt e p+yq—m("’q))h(p q)dpdq
R

(7.104)

for all y > 0. Moreover, (7.100) implies that he L,(R¥). Thus
(7.104) and (7.101) imply that in the half-space y > h vo(t,.x,y)
coincides with a solution in LQ(R3) of the d'Alembert equation
with propagation speed c,. Now, the results of section 3 imply
that the right-hand side of (7.104) has an asymprotlc wave function
in L (R ); say

ww(t,x,y) = G(r-cyt,0)/r, r? = lx]2 + yz, 6 = (x,y)/r

(7.105)
It follows that if
o [Wm(t,x,y—h), ¥=h
vy (E,x,y) =< (7.106)
0, 0<y<h
then
(>4
lim Ivo(t,',') - Vq(t"")"ﬂ‘= 0 (7.107)

t—)@
A proof may be found in [40]. This paper also contains a proof of
convergence in the energy norm, when h has finite energy, and
applications of these results to the calculation of asymptotic
energy distributions in stratified fluids.

7.17 Other cases

The case of the symmetric Epstein profile, defined by

c(y) = C;z sech?(y/H) + c;ztanhz(yln) (7.108)

and p(y) = 1 was studied by the author in [41] where eigenfunction
expansions and asymptotic wave functions are derived. Eigenfunc-
tion expansions for the case of the general Epstein profile

c¢=%(y) = K cosh?(y/H) + L tanh (y/H) + M (7.109)
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and p(y) = 1 have been given by J. C. Guillot and the author [14,
15]. Asymptotic wave functions for this case are currently being
studied by Y. Dermenjian, J. C. Guillot and the author. Prelim-~
inary studies show that the results given above for the Pekeris
model are valid for a large class of profiles c(y), p(y). The
essential hypotheses, apart from the boundedness (7.7), are that
c(y) should have a global minimum at some finite point and that
c(y) should tend to a limit at infinity sufficiently rapidly. If
c(y) does not have a minimum then there are no guided waves.
However, these results have not yet been proved in this generalicy.

8. PROPAGATION IN CRYSTALS

Acoustic wave propagation in an unlimited homogeneous crystal
is analyzed in this section. The analysis is similar to that for
homogeneous fluids given in section 3. The principal new feature
is the influence of anisotropy on the structure of the asymptotic
wave functions.

A homogeneous crystal is characterized pz a2 constant density
p(x) = p and stress-strain tensor c g(x) = Cim' It will suffice

to consider the case p = 1. Thus the propagation problem reduces
in this case to the Cauchy problem for the system

3%u 9%u
el o gk Ly 18 (8.1)
3¢z K gy gy

xk m

where the constants czm satisfy (2.13) and (2.35).

jk

8.1 Hilbert space formulation

It was shown in section 2 that the differential operator A
defined by

9%u
(ha, & & e Ly =1,2.3 (8.2)

3k

Bxkaxm

is formally selfadjoint in the Hilbert space X = LZ(R3,C’) with
inner product

(u,v) = uj(x) vj(x) dx (8.3)
R?
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In fact, the operator A in I with domain D(A) = D(R?) is essen-
tially selfadjoint and its unique selfadjoint exten 1 is the
operator A defined by ’

D(A) = H  {u: Au € 3} (8.4)
Au = Au for all u € D(A) (8.5)

It is easy to verify, using the Plancherel theory of the Fourier
transform, the following

8.2 Theorem

F A is a selfadjoint, real positive operator in I(.

It follows, as in preceding sections, that the Cauchy problem
for (8.1) has a solution in I of the form

uj(t,x) = Re {vj(t,x)} (8.6)

where

£+ iA~Yge 1 (8.7)

v(t,*) = exp (—itAl/z)h, h

n

whenever the Cauchy data u(0,x) = f(x) and Ju(0,x)/d0t = g(x) satisfy
fe€ K, g€ DAYV,

8.3 Fourier analysis of A

The Plancherel theory of the Fourier transform ¢0: Lz(Ra)'*Lz(Rs)
was defined and used in section 3; see (3.12). 1t may be extended
immediately to X = L,(R%,C?) by defining

¢ou = ¢°(ul,u2,u3) = (@0u1,¢0u2,¢0u3) (8.8)

and ¢, is also unitary in . Property (3.14) implies that the
operator ¢ A ¢: corresponds to multiplication by the 3 X 3 matrix
valued function

AG) = (A () = (fp ppy)s P E R (8.9)

Thus
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A=9 AC) 9, (8.10)

Moreover, conditions (2.13) and (2.35) imply that A(p) is a real
Hermitian positive definite matrix for all p € R® - {0}. The
spectral analysis of A will be based on (8.10). The analysis
begins with

8.4 Spectral analysis of A(p)

The eigenvalues of A(p) are the roots u of the characteristic
polynomial

det (ul - A(p)) =0 (8.11)

The Hermitian positive definiteness of A(p) implies that the roots
are real and positive for all p € R® - {0}. They may be uniquely
defined as functions of p by enumerating them according to their
magnitudes:

0 < 1y (p) < Ha(p) < uy(p) for all p € R’ (8.12)

A result of T. Kato [18] implies (gee also [37])

uj: R?® + R is continuous, j=1,2,3 (8.13)
Equation (8.11) implies that uj(p) is homogeneous of degree 2

uj(ap) = azuj(p) for all « € R and p € R? (8.14)
The functions

() = fuj—(g pER), §=1,2,3 (8.15)

are also needed below. A detailed study of these functions has
been made by the author in connection with a formulation of elas-
ticity theory in terms of first order symmetric hyperbolic systems;
see [29,35,37,44]. A number of results from these papers are
quoted and used below.

It was shown in [44] that there exists a homogeneous poly-
nomial O(p) # O such that the points p € R® where two or more
roots uj(p) coincide are contained in the cone
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z={peRr® 0(p) =0} ) (8.16)
Thus
0 < u,(p) < u,(p) < p,(p) for all p € R® - 2 (8.17)
It follows that
uj(p) is analytic on R® - 2, j = 1,2,3 (8.18)

The orthogonal projection of C? onto the eigenspace for u,(p) is
given by [18] J

Py(p) = - 7y (A@p) - 21)7Mdz, = 1,2,3  (8.19)
Yj(P)
where
Yj(P) = {z: |z - uj(p)l = Cj(p)}, j=1,2,3 (8.20)

and the radii c;(p) are chosen so small that the 3 circles Ys(p)
are disjoint. This is possible for all p € R® - Z by (8.17). The
matrix valued functions P; so defined can be shown to have the
following properties [lS,ié]:

ﬁj(p) is analytic on R® -~ Z, Jj=1,2,3 (8.21)
ﬁj(ap) = ﬁj(p) for all a # 0 (8.22)
* s ~ ~ A = A 3
Pj(P) = Pj(P), Pj(P) Pk(p) = ijpk(p) for pe R°-2  (8.23)
3
J faj(p) =1forpeRr’-2 (8.24)
J=1

A(p) ﬁj(p) = 1y (p) ﬁj(p) for pe R - 2, § =1,2,3  (8.25)

The last two properties imply that the projections ﬁj(p) de-
fine a spectral representation for A(p); i.e.,

o
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3 ;
NORING! f’j(p) for pE€ R? - 2 (8.26)
j=1

‘ 8.5 Spectral analysis of A

i The representations (8.10) and (8.26) provide a complete

| spectral analysis of A. In particular, it follows that A is an
absolutely continuous operator whose spectrum is [0,») (cf. [36,
441). Moreover, if Y(u) is any bounded Lebesgue-measurable func-
tion of 4 > 0 then

3
YA = 0p T Y () B () @ (8.27)
3 k=1

8.6 Solution in I of the Cauchy problem

Application of (8.27) to the solution in ¥€ (8.7) yields the

representation
3
v(t,x) = Z Vk(t,x) (8.28)
k=1
where
1 1(x*p-tA, (P)) 3
vk(t,x) & 135337; : e Pk(p)h(p)dp (8.29)

R

and kk(p) = /uk(p). Of course, the integral in (8.29) converges
in H, in the sense of the Plancherel theory, rather than pointwise.
Equations (8.28), (8.29) represent solutions in ¥ of (8.1) as a
superposition of solutions

1(xsp-tA (P)) A
e P, (P)h(p) (8.30)

This may be interpreted as a plane wave which propagates in the
crystal with direction p/|p|, wave number |p| and frequency

w = Ak(p) (8.31)
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The polarization of the wave is determined by ﬁk(p). The corres-
ponding generalized eigenfunctions of A are the matrix plane waves
[30]

v (x,p) = TE#TEE' exp (ixep) ﬁk(p) (8.32)

8.7 The dispersion relation, phase and group velocities
The dispersion relation between the frequency w and wave vec~

tor p of plane waves in the crystal is (8.31) or, by (8.15) and
(8.11)

det (w?1 - A(p)) =0 (8.33)

The phase velocity for (8.1) is

(p)

Pl =y ¢ gl ST M [TPT] = (8.34)

by the homogeneity of Ak(p). The group velocity for (8.1) is

v (p) v w =V Ak(p) (8.35)

The medium is said to be isotropic if v h(p) and v (p) have the
same direction for all p € R? - {0}. otherwise 1t%is said to be
anisotropic. It is easy to verify that the medium is isotropic
if and only if A (p) is a function of ITI alone. 1In this case

AP = ¢, lpl an Vo (P = v (p) = cyp/lp

The phase and group speeds for (8.1) are the magnitudes of
the corresponding velocities. Thus

conP) = (v | = A e/ lpD) )

> (8.36)

|
cg(p) = v (P)| = V.2 (p) J

Note that both are homogeneous of degree zero in p and hence depend
only on the direction of propagation p/|p|. The anisotropy of the
medium characterized by (8.1) can be visualized by means of
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8.8 The slowness surface S

This is the real algebraic variety defined by
s = {p€ R’ det (1 -A(p)) =0} (8.37)

It is clear from the definition of the Ak(p) that

7
]
Co
(%
.

(8.38)
k=1
where
= 3. =
Sk {peRr’: Ak(p) 15 (8.39)
or, by (8.36) and the homogenecity of Ak(p),
s, = b€ R [ple (p) =1} (8.40)

Thus p € S if and only if |p| is the reciprocal of a phase speed
for the direction p. Note that the slowness surface of an isotropic
medium is a set of concentric spheres with centers at the origin.

The properties of slowness surfaces were studied in [35] and
[44]. In particular, the following properties were established

Sk is continuous and star-shaped with respect to 0 (8.41)

As an algebraic variety, S will in general have singular points
and these are precisely the set

zg = {pes: pe sj n s, for some j # kl} (8.42)
Hence
Sk - Zé, k = 1,2,3, are disjoint and analytic (8.43)

8.9 The wave surface W

The variation of the phase speed with direction is represented
by the slowness surface S. Similarly, the variation of the group
speed is represented by the wave surface W. W may be defined as




83

the polar reciprocal of S with respect to the unit sphere. This
means that

W={x€R¥ x+p=11is a tangent plane to S} (8.44)

It is known that W is a real algebraic variety whose degree is
the class number of S [7,28]. Moreover, the relation of S and W
is symmetric: S is also the polar reciprocal of W. It is clear
that if

N(p) = the set of all exterior unit normals to S at p (8.45)
then
W={x=(p*N(p)) N(p): pE S} (8.46)

Now the group velocity vg(p) = VhA(p) 1is normal to § at each
pE€ S - 24. Moreover, p-* Vpkk(pg = A(p) =1 for such points p
by (8.39) and the homogeneity of A, (p). Hence

= = . = !
{x = vg(p) = vpxk(p). pPE S zs} cCW (8.47)
for k = 1,2,3.
8.10 The polar reciprocal map T: S * W
This is the map defined in (8.46); i.e.,
T(p) = (p* N(p))~ ! N(p) for all pE S (8.48)

As indicated above, N(p) is not, in general, single valued. It
follows that T may be neither single-valued nor injective. How-
ever, it was shown in [49] that if

Z! = set of singular points of S ]

S

> (8.49)
Zy = set of singular points of W J
2g =T 24, 2 = T2 (8.50)
ZS = Zé U Zg, Zw = Z& U Z& (8.51)
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then ZS and Zw are sub-varieties of dimension <1 and

T is bijective and analytic from S - ZS to W - Zw (8.52)

8.11 Examples

The equation (8.37) for the slowness surface of a crystal
contains 21 independent parameters in the most general case (tri-
clinic crystals). Hence a great variety of slowness surfaces are
possible. Crystal symmetries may reduce the number of parameters.
The slowness surfaces of the various symmetry classes have becen
studied by many authors. Thorough discussions and examples may
be found in [3] and [24] where specific numerical information on
the stress-strain tensors of real crystals may also be found.
Here two examples will be described briefly to show the kind of
surfaces that may occur.

Cubic crystals. 1In this case symmetry reduces the number of
independent parameters to 3 and the equaticn for S can be written

[24]

3 P%
) - (8.53)
j=1 8—b'pl -ij

Of course, the positive definitenes: of C%E imposes certain numer-
ical restrictions on a, b and c¢. Equation (8.53) represents a
surface of degree 6 which is irreducible except for special param-
eter values.

Hexagonal crystals. In this case symmetry reduces the number
of independent parameters to 5. Morecover, S is necessarily a sur-
face of revolution and reduces to two components whose equations
can be written [24]

a?(p? + p2) + b’pl =1 (8.54)

pi+p} 2

_P3 =
c?-d?|p|2+e(p3+p3) = c2-dZ|p|2+£p3 1 (8.55)

(where a, b, ¢, d, e and f can be expressed in terms of 5 indepen-
dent parameters). The two equations have degrees 2 and 4, respec~
tively. These surfaces of revolution can be visualized from their
traces on the p,,p;-plane; see [24,p.99] for a graph of such an §

and the corresponding W. It is seen that in the example Zé consists
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of 2 circles and 2 points lying in S while Z& consists of 8 circles
and 2 points lying in W.
8.12 Asymptotic wave functions for crystals

It was shown in [44] that the equations (8.1) for acoustic
waves in crystals have asymptotic wave functions of the form

v(0)
Ve = ] Fxes® o) - 6,5 @)/ 1x,
a=1 (8.56)
x = |x|9
where
s @) es, a=1,24,u(0) (8.57)
is the solution set of the equation
N(s) = 6 (8.58)
Thus s(u) defines the multivalued inverse of the Gauss map N of S.

The principal properties of v©(t,x) are described by the following
theorem whose proof is contained in [44].

8.13 Theorem
For each h € I there exists a unique F: R x S » C? such that
v (t,*) € ¥ for all t € R (8.59)
t > v (t,*) € ¥ is continuous for all t € R (8.60)
Bv (t,*)l; < Chhl, where C is independent of h and t (8.61)

Finally, v is an asymptotic wave function for v(t,*)
= exp (-1tAY?)h:

lim fv(t,*) - v°°(t,')||3( =0 : (8.62)

t >

Moreover, explicit constructions of s(a)(O) and F(1,s) are given
in [49]. 1In the present case they take the following form.
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8.14 Construction of s(“)(e)

The construction consists of two steps.

(@) = wn i i i £
: x°(8), a=1, ,V(0) is the intersection of (8.63)

W - Zy and the ray from O along 6

s@@g) = %@y es -z (8.64)

S

(a)

Note that this defines s (8) for all 6 outside of the null set

2° ={8: x=|x|8eez}cs?={0: |[o] =1} (8.65)

8.15 Construction of F(r1,s)

F is calculated from h = v(0,*) € i by the rule

F(T,s) = (2m)~Y2 y(g) J XX Rorayian (8.66)
i
where
¥(s) = w(s)|K(s)|™Y2 |T(s)|7! B(s) (8.67)
W(s) = exp {17 (p7(s) - p'(s))} (8.68)
pt(s) = the numbe; of principal curvatures of S (8.69)

at s which are < 0.
K(s) = Gaussian curvature of S at s (8.70)

ﬁ(s) = orthogonal projection of c?® onto the
eigenspace for the eigenvalue p = 1 of A(s) (8.71)
(s € 5)

It is shown in [44] that ¥(s) is defined for all s € § - ZS' In
particular, the parabolic points of S lie in Z.. The integral for
F need not converge pointwise, but it converges in the Hilbert
space H(S) with norm defined by
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I Fi

:;2((5) - J( |F(t,8)|? |K(s)T(s)| dsdt (8.72)

0 S

Moreover, the operator O: I -+ H(S) defined by 6h = F is an
isometry.

8.16 Propagation in non-uniform crystals

The method developed in [42) and section 4 can be applied to
local perturbations of uniform crystals. Eigenfunction expansions
for non-uniform crystals, and more general systems, have been
given by G. Nenciu [25].
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